High Performance JSON
PostgreSQL vs. MongoDB

FOSDEM PGDay 2018

Dominic Dwyer
Wei Shan Ang

C GlobalSign.

GMOINTERNET GROUP

)

Postgre SQL VS e

GlobalSign

e GlobalSign identity & crypto services provider
e \WebTrust certified Certificate Authority - 3rd in the world
e High volume services - loT devices, cloud providers

e Cryptographic identities, timestamping, signing, etc

0 GlobalSign.

GMOINTERNET GROUP

About Me

e Database Engineer with 6 years of experience
e From Singapore but now based in London

e Originally worked on Oracle systems

e Switched to open-source databases in 2015

e Currently working in GlobalSign as a “Data Reliability Engineer”

Motivation

e Most benchmark results are biased - commercial interests

e \We feel that benchmark results are measured “creatively”

e We use PostgreSQL and MongoDB a lot!

e \Ne wanted to test the latest versions

For example, marketing technology vendor Mintigo leverages MongoDB to power its
predictive analytics. They chose MongoDB over PostgreSQL for the flexibility of the
document-based model and MongoDB's ability to scale. “We initially prototyped on an
alternative database technology called PostgreSQL. It's a great relational database but it
soon became clear that it would never handle the schema flexibility or scale that we
needed,” explains Tal Segalov, CTO and Co-Founder of Mintigo.

Other organizations select MongoDB for its performance and scalability, such as the
Ansible team at Red Hat that selected MongoDB for a log analysis application.
“MongoDB performs orders of magnitude better than Postgres on the same, even double,
the hardware and has other desirable features (i.e. arbitrary JSON structure querying,
horizontal scaling),” says Chris Meyers of Red Hat?. eHarmony was able to accelerate
compatibility matching between potential partners 95% faster after migrating from
relational databases, including Postgres®.

578]

212
0.00]

Select (sec)

= Mongodb 3.2.0
Mongodb 3.2.0 MMAPV1
= Mysal 5.7.8

& PG 9.5b1 jsquery

= PG 9.5b1 jpo

= PG 9.5b1

MongoDB 2.6/PostgreSQL 9.4 Relative Performance
Comparison (50 Million Documents)

465%

| see no reason to use Mongodb,

PostgreSQL still beats Mongodb !

PostgreSQL

P 0O Stg re S Q L - farb S

List: pgsal-bugs

Post date: | anytime

Around for 21 years

JSON supported since 9.2 ressits i eraze

JSONB supported since 9.4

Does not have any statistics about the internals of document types like JSON

or JSONB

o Can be overcome with default_statistics_target or ALTER TABLE TABLE_NAME ALTER int4
SET STATISTICS 2000;

Many JSON/JSONB operator/functions released since 9.2 (jsonb_set,
jsonb_insert) |
Many JSON/JSONB bug fixes too

Results 1-20 of 336.

PostgreSQL Ecosystem

e “Build it yourself’

e Many High Availability solutions - all 3rd party
o repmgr, pacemaker/corosync, Slony, Patroni and many more
e Connection Pooling
o pgBouncer (single-threaded), pgpool-ll
e Sharding
o CitusDB
e Live version upgrades - tricky!

o pg_upgrade, Slony, pg_dump and pg_logical

MongoDB

MongoDB

e Relatively “young” database software
8 years since first release

(@)

e Known as a /dev/null database in the early days (epsen.io)
Tremendous stability improvements since then
All known reliability issues has been fixed since 3.2.12

(@)

(@)

e Lots of WiredTiger bug fixes since 3.2

@)

@)

(@)

Cache eviction

Checkpoints

Lost updates and dirty writes

Version Lost updates Dirty Reads Stale Reads

30.14 Allowed (no v1) Allowed (no maj. read) Allowed (no lin. read)
3.2.11 Allowed (v1 bugs) Kinda Allowed (no lin. read)
32.12 Prevented Prevented Allowed (no lin. read)
3.4.0-rc3 Allowed (v1 bugs) Kinda Kinda

3.4.0-rc4 Allowed (v1 bugs) Kinda Kinda

340 Prevented Prevented Prevented

Source: jepsen.io

WT-1462 Add latency to Jenkins wtperf tests and plots

WT-2026 Maximum pages size at eviction too large

WT-2224 Document which statistics are available via a "fast" configuration vs. an "all" configuration
WT-2233 Investigate changing when the eviction server switches to aggressive mode.

WT-2239 Make sure LSM cursors read up to date dsk_gen, it was racing with compact

WH-2323 Allocate a transaction id at the t
WT-2353 Failure to create async threads
WT-2380 Make scripts fail if code doesn't
WT-2486 Update make check so that it ru
WT-2555 make format run on Windows
WT-2578 remove write barriers from the 1
WT-2634 nullptr is passed for parameters
WT-2638 ftruncate may not be supported
WT-2645 wt dump: push the complexity o
WT-2648 cache-line alignment for new pc
WT-2665 Limit allocator fragmentation in
WT-2678 The metadata should not imply
WT-2688 configure --enable-python does
WT-2693 Check open_cursor error paths
WT-2695 Integrate s390x accelerated crc
\WH-2708 split child-update race with reco
WT-2741 Change statistics log configurati
WT-2719 add fuzz testing for WiredTiger
WT-2728 Don't re-read log file headers du
WT-2729 Focus eviction walks in largest {
WT-2730 cursor next/prev can return the
\WH-2734 Raw compression can create p:
WT-2732 Coverity analysis defect 99665:
WT-2734 Improve documentation of evict
WT-2737 Scrub dirty pages rather than e\
WT-2738 Remove the ability to change th
WT-2739 pluggable file systems documer
WT-2743 Thread count statistics always r
WT-2744 partial line even with line bufferi
WT-2746 track checkpoint I/O separately
WE-2754 column-store statistics incorrect
WT-2752 Fixes to zipfian wtperf workload
WT-2755 flexelint configuration treats size
WT-2756 Upgrade the autoconf archive p
WI-2757 Column tables behave different|

WF-2888 Switch functions to return void ;lv7r1ere possible
WF-2892 hot backup can race with block truncate
WF-2896 Coverity #1362535: resource leak

WT-2760 Fix a bug in backup related to directory sync. Change the filesystem API to make durab #2343 Assert we don't remove or rename when backup cursor is open

WT-2762 wistats tool fails if checkpoint runs
WT-2763 Unit test test_intpack failing on OSX

WT-2764 Optimize checkpoints to reduce throughput disruption
WT-2765 wt dump: indices need to be shown in the dump output

WT-2766 Don't count eviction of lookaside file pages for the purpose of checking stuck cache

WT-2767 test suite needs way to run an individual scenario

WT-2769 Update documentation to reflect correct limits of memory_page_max

WT-2770 Add statistics tracking schema operations

WT-2772 Investigate log performance testing weirdness
WT-2773 search_near in indexes does not find exact matches
\WT-2774 minor cleanups/improvements

WT-2778 Python test suite: make scenario initialization consistent 2818 The page visibility check
WT-2779 Raw compression created unexpectedly large pages on ¢

WT-2782 Missing a fs_directory_list_free in ex_file_system.c
WT-2783 wtperf multi-btree.wtperf dumps core on Mac

WT-2787 Include src/include/wiredtiger_ext.h is problematic

WT-2794 Enhance OS X Evergreen unit test
WT-2793 wtperf config improvements

WT-2795 Update documentation around read-only configuration
WF-2796 Memory leak in reconciliation uncovered by stress testing .z 2249 clan
W-2798 Crash vulnerability with nojournal after create during che w2844 Jenkins Valgrind runner is

WT-2800 lllegal file format in test/format on PPC

WT-2804 Crash vulnerability from eviction of metadata during chec #2843 Fixa bug in recovery if the

WT-2802 Transaction commit causes heap-use-after free
WT-2803 Add verbose functionality to WT Evergreen tests
WT-2804 Don't read values in a tree without a snapshot
2805 Infinite recursion if error streams fail

WT-2806 wtperf allocation size off-by-one

WT-2807 Switch Jenkins performance tests to tcmalloc

WT-2103 Add incremental backup testing to format
WT-2223 Add stress testing for in-memory
WT-2268 JSON load incorrect with UNICODE input
WT-2319 Add statistics around fsync calls
WT-2325 Fix an incomplete comment

WT-2349 Add ability to open databases read-only

WT-2359 WiredTiger with Python will hang if a calloc failure occurs during
WT-2360 Allow disjunctions and combinations of operations in join cursors

WT-2408 Windows error translation layer

WT-2446 Estimate WT cache hit ratio

WT-2450 Salvage releases pages, then explicitly evicts them.
WT-2453 Throughput drop in wtperf evict Jenkins tests
WT-2479 Dump utility discards table config (JSON)

WT-2491 The dhandle close_lock isn't valuable at the moment
WT-2504 Should READONLY always read basecfg file?
WT-2505 Review clang analyzer warnings

WF-2653 The custom file-system example should show device configuration
WT-2656 Builds failing on GCC 4.7 builder

WF-2658 Only include PPC-specific files in PPC builds

WT-2659 csuite tests, assorted lint and cleanup.

WT-2660 Hang between eviction and connection close

WT-2664 Coverity failures: 1356050-1356053

WT-2662 For internal spell checking, strip out double quote literals, they confuse aspell
WA-2664 Change eviction so any eviction thread can find candidates

WA-2667 Enhance WiredTiger Evergreen testing

WT-2668 Create join statistics that are useful and are easy to understand
WT-2671 Dump more information about the file layout in verify debug mode
WT-2672 Handle system calls that don't set errno

WT-2673 Stop automatically increasing memory page max

WT-2674 Simplify metadata file check

WT-2676 Don't use key size in column store in-memory splits.

WT-2677 Fix JSON output so only printable ASCII is produced (seen on Solaris)
WT-2682 Add option to configure WiredTiger with strict compiler flags

WT-2683 WiredTiger no longer needs to return non-zero disk sizes

WT-2685 Hazard pointer failure from clear walk

WT-2508 Test programs should remove test directories on the "clean” targ /72686 Logging subsystem core dump

add gcc warn_unused_res

WT-2828 Make long wtperf tests refl
WT-2829 Switch automated testing 1

WT-2838 lint: |
g analysis: garbage ve

WF-2842 split wiperf's configuration

WT-2853 Multi threaded reader write

s Sty WH-2554 Implement a frame!
e runcate calls shot :
W-2862 Fix lint error in test case fo REDIDUIDEEE

\WT-2863 Support UTF-8 paths on v W-2667 format test prograrn
WT-2865 eviction thread error failure YW—2668 WT_PAGE structur

WF-2844 Reconciliation asserts that transaction time has gone bac wr2sss Eviction server algorithm tuning

WT-2842 Error when reconfiguring cache targets

WT-2843 small cache usage stuck even with large cache

WT-2844 Enhance wtperf to support single-op truncate mode
SHA 2 o6

WWF-2897 Checkpoints can become corrupted on failure
WF-2904 Add option to disable checkpoint dirty stepdown phase
WT-2903 Reduce the impact of checkpoint scrubbing on applications

RO AlAl

WT-2867 Review and fix barrier usage in __Ism_tree_close

WT-2868 Add sample_interval to checkpoint-stress wiperf config

WT-2869 Performance regression on secondaries

WT-2870 Rename wtperf checkpoint schema jobs
__wt_verbose has the wrong GCC format attributes

WT-2874
develop, add work w1-2872 Recent stuck cache test/stress failures.
J pages for evictior W¥-2873 Refactor CRC32 code

WT-2875 Test test_wt2853_perf can run too long under valgrind
WT-2876 Extend wtperf to support a log like table

WT-2878 Verbose changes affected performance

WT-2881 Add -Wpedantic to clang compiler warning flags

WT-2883 wiredtiger_open with recursive loop
WT-2885 __wt_checkpoint_signal lint

WT-2886 Decide how in-memory configuration and eviction_dirty_targe

WT-2514 Log path name is an empty string.

WT-2822 panic mutex and other fun 2648 LSM checkpoint handle acquisition optimization

WA-2784 Enhance bulk cursor option with an option to return imme y7 2823 support file handles witho. W¥-2520 WT_SESSION::verify should not alter tables

WF-2824 wiperf displays connection WT-2526 Mixing and matching readonly and read/write handles

W-2826 clang38 false positive on L \WT 2535 Extend test/format to test for transactions reading their writes
WT-2785 Scrub dirty pages rather than evicting them: single-page ¥/F-2827 checkpoint log_size config yyr 5537 Cannot open DB written by WT2.6.1 with WT2.8.0 due to WT_N
WT-2539 Implement file streaming above pluggable filesystems

WT-2788 Java: freed memory overwrite during handle close can ce w2832 Python test uses hard-cod YW-2640 Separate stream and file handle methods

WT-2834 Join cursor: discrepancy w WH2644 Add statistics for number of threads currently in read/write
WF-2835 WT_CONNECTION.leak-r 2542 Fixed-length column store reconciliation overwrites original value
2838 Don't free session handles WT-2544 Fix eviction statistics when clear is configured

gnoring return value ¢ w1 o545 Eviction server not help evict pages sometimes

WT-2547 Add 1-eviction-worker jobs to Jenkins

WT-2548 Cap the amount of data handed to raw compression.

WT-2549 joins using recno keys return no values

WT-2846 Several bugs related to re« VW-2560 java ex_schema example fails

WH-2847 Merge fair locks into read/ WT-2552 Public API for pluggable filesystems

WF-2850 clang 4.1 attribute warmning \WT 2553 Document in-memory configuration and WT_CACHE_FULL erro

WT-2687 Test suite should verify the exit status of the wt utility
WT-2689 Use after free in WT_SESSION::open_cursor
WT-2691 Use wrappers for ctype functions to avoid sign extension errors
WH-2692 Fix race in file system example
WT-2696 Race condition on unclean shutdown may miss log records with large updates
WT-2698 Test/recovery hung
WH-2702 Under high thread load, WiredTiger exceeds cache size
WH-2704 Test/format hung on bengal
WT-2706 Race condition on log file switch can cause missing log records
WH-2707 dist/s_label enhancements, and error jump cleanups
WH-2709 Connection reconfigure segfault in __wt_conn_cache_pool_destroy
WT-2740 WT_FILE_HANDLE_INMEM no longer needs an off field
WE-2742 Coverity 1356928 and 1356929: ASSERT_SIDE_EFFECT
WT-2743 Document WT_PANIC so pluggable filesystems can panic.
WA-2744 Lint
WT-2715 random-abort test may write partial record at the end
WA-2720 Pull request tester not running Python suite
WT-2722 s_label or s_label_loop false positive
WI-2724 Eviction workers created on open exit immediately
. . WA-2763 Unit test test_intpack failing on OSX
WW-2864 Reconfiguring tne vneckpunit server Gan ieau w nangs

WA-2874 Change test_compact01 to avoid eviction

W-2018 The dist scripts create C files s whitespace complains about
WWT-2848 Don't mask error returns from style checking scripts

WA-2924 Reduce the WT_SESSION hazard_size when possible

W-2923 heap-use-after-free on address in compaction

W-2924 Ensure we are doing eviction when threads are waiting for it
W-2025 WT_THREAD_PANIC_FAIL is a WT_THREAD structure flag
W-2926 WT_CONNECTION.reconfigure can attempt unlock of not-locked lock
WA-2928 Eviction failing to switch queues can lead to starvation

MongoDB

e Everything comes as standard:
O Built-in replication
O Built-in sharding

O Live cluster version upgrades (ish)

m Shutdown slave, upgrade slave, startup slave, repeat

Server Hardware

o 2x Intel(R) Xeon(R) CPU E5-2630 v4
o 20 cores /40 threads

e 32GB Memory

e FreeBSD 11

o /FS file system

e 2x1.6TB (Intel SSD DC S3610, MLC)

Why do we use ZFS?

e Highly tunable filesystem
o Layered caching (ARC, L2ARC, ZIL)

o Advanced cache algorithm
m Most Recently Used (MRU)
m Most Frequently Used (MFU)

OpenZFS

e Free snapshots

e Bilock level checksums
e Fast compression

e Nexenta, Delphix, Datto, Joyent, Tegile, Oracle (obviously) and many more!

The Setup

e 1-3 Client machines (depending on the test)

e 1 Server, two jails - one for Postgres & one for Mongo

e PostgreSQL 9.6.5 with pgBouncer 1.7.2
e MongoDB 3.4.9 with WiredTiger

pgBouncer

/ PostgreSQL

Performance Tuning

e \We had to tune PostgreSQL heavily

o System V IPC (shmmax, shmall, semmns and etc)
o pgBouncer (single threaded, we need multiple instances to handle the load)

e MongoDB tuning was easy!
o WiredTiger cache size
o Compression settings
o Default settings are usually good enough

e /FS tuning
o atime
o recordsize
o checksum
o compression

Sample JSON Document

"_id" : NumberLong(2),
"name" : "IPAyAYpUvUDGICd", Sub-documents

"addresses" : [
{

"number" : 59,
"line1" : "EPJKLhmEPrrdYqgaFxxEVMF",
"line2" : "Rvigkmb"

|3

{
"number" : 59,
"line1" : "DACBXEW",
"line2" : "FEV"

}

I,
"phone_number" : "xPOYCOfSpielxbGxpYEpi",
"dob" : ISODate("2017-09-05T00:03:28.9562"),
"age" : 442006075, : :
“balance" : 0.807247519493103, . Varying field types
"enabled" : false,
"counter" : 442006075,
"padding" : BinData(0,"")
} \

Randomised binary blob

About Me

e Engineer on the High Performance Platforms team

o Our team builds a high volume CA platform & distributed systems
o Based in Old Street, London
o Greenfields project, all new stuff!

e Day job has me breaking all the things

o Simulating failures, network partitions, etc
o Assessing performance and durability

e Maintain performance fork of Go MongoDB driver
o github.com/globalsign/mgo

MPJBT Benchmark Tool

e MongoDB PostgreSQL JSONB Benchmarking Tool

o Seriously, we're open to better names.......

e \Written in Golang
e Open source!

e Models typical workloads (but maybe not yours!)
o Inserts, selects, select-updates, range queries, etc.
e Lockless outside of the database drivers

o Low contention improves ability to push servers

Why Go?

e Designed from the start for high concurrency
o Thousands of concurrent workers is totally fine

e (Co-operative scheduler can maximise I/O throughput
o When blocked, Go switches to another worker
o Blocked worker is woken up when it’s unblocked
o Much cheaper context switching - occurs in userland

e Familiarity - | use it every day!

t deliver?

Does

187 days(!), 02:23:14

; 2 runni
42.35 14.72

Insert 10,000,000 records

250.0 @ MongoDB
Il Postgres

200.0
150.0
100.0

50.0

0.0

Time to insert 10m records

Average isn’t very helpful

e | have an average of 52.2ms

Average isn’t very helpful

| have an average of 52.2ms

120.080231
36.
25.
44 .
66.
59.
4.

1
90
277

237584
904811
053916
617778
713100
620329
689589
.641940
.202953

OR

51.
.202392
52.
50.
52.
52.
53.
52.
51.
52.

52

162331

511745
439697
975609
567941
067609
122890
159180
390616

M Postgres
W Mongo

GBEELL9ESEOL
£T1¥6-£9558
§8LLL9LL0L
9BIFIETreS
ELE5-0E8Y
6'06E1-8'L66E
6'879E-662E
L'666Z-7'9242
9'BLVETESEE
¥ er0g-gceasl
6T691-6851
L'66EL-6'LLTL
£9511-Z'150L
9'666-4'398
L68-81L

CT0E-8'9/2
9°1L62-8'872
807-1'68
6LLL-Z951

Inserts - Latency Histogram

1000

500

i]

-500

-1000

£99-209
8vC86Y
ECrl'ly
VLEVE

60E-1'8C
SGETE

LLzZel

FLL6GL

FrL-LEL
801

~

@ w0

o
&

Latency (ms)

2s 3s

1s

M Postgres
W Mongo

GBEELL9ESEOL
£T1¥6-£9558
§8LLL9LL0L
9BIFIETreS
ELE5-0E8Y
6'06E1-8'L66E
6'879E-662E
L'666Z-7'9242
9'BLVETESEE
¥ er0g-gceasl
6T691-6851
L'66EL-6'LLTL
£9511-Z'150L
9'666-4'398
L68-81L

CT0E-8'9/2
9°1L62-8'872
807-1'68
6LLL-Z951

Inserts - Latency Histogram

1000

500

i]

-500

-1000

£99-209
8vC86Y
ECrl'ly
VLEVE

60E-1'8C
SGETE

LLzZel

FLL6GL

FrL-LEL
801

~

@ w0

o
&

Latency (ms)

insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

)

308770p/s
275090p/s
299970p/s
311430p/s
225760p/s

Oop/s avg.
Oop/s avg.
lop/s avg.
Oop/s avg.

207030p/s
311540p/s
312980p/s
30359%0p/s

Inserts - Throughput

avg.0Oms
avg.0Oms
avg.0Oms
avg.0Oms
avg.0Oms
Oms

Oms
2561ms
Oms
avg.o6ms
avg.0Oms
avg.0Oms
avg.0Oms

insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

26081op/s
259380p/s
266490p/s
260090p/s
260290p/s
255220p/s
259600p/s
260000p/s
255760p/s
26159%0p/s
256280p/s
260710p/s
258560p/s

avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.

Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms

MongoDB cache eviction bug?

Inserts Throughput vs Dirty Cache/Bytes in Cache

——inserts ——cpu -~ diff tracked dirty MB ~ —— diff MB currently in cache
200 6000
100 4500
0 3000
-100 1500
-200 0
2017/05/23 14:52:00 2017/05/23 14:54:00 2017/05/23 14:56:00 2017/05/23 14:58:00 2017/05/23 15:00:00

timestamp

https://jira.mongodb.org/browse/SERVER-29311

MongoDB cache eviction bug - not a bug?

e Reported to MongoDB e

o https://jira.mongodb.org/browse/SERVER-29311
o Offered to run any tests and analyse data

e Ran 36 different test combinations
ZFS compression: |1z4, zlib, off
MongoDB compression: snappy, zlib, off
Filesystem block sizes

Disk configurations

Tried running on Linux/XFS

o O O O O

e Always saw the same pauses
o Described as an I/O bottleneck

https://jira.mongodb.org/browse/SERVER-29311

Profile with Dtrace!

e Dynamic tracer built into FreeBSD (and others)
o Originally created by Sun for Solaris
o Ported to FreeBSD
o Low profiling overhead

e Traces in both kernel and userspace

o Hook syscalls, libc, application functions, etc
o Access function arguments, kernel structures, etc

e Hooks expressed in D like DSL
o Conditionally trigger traces
o Really simple to use

Trace the Virtual File System

2017/09/17 17:00:35

e Measures application file system operations

value ------------- Distribution ------------- coun t

O Kernel level iggg :@@@@@@@@@@@@@@@@@@@@
8192 |060E0EEEREEE0800000

o File system agnostic (XFS, ZFS, anything) 1634 |

Latency: postgres write

value =-===-===--nn Distribution ---===------- coun t
. 12 |
e Records data size & latency: ot 1
40% |eeee
o Reads-vfs::vop read s |
o Writes-vfs::vop write o3 |

131072 |

ostgres read

e Configured to output ASCII histograms T prstribution

8197 |CRECEREAARCEERAAAACEEEAAAARECARACEEARRAR 4

o Per second aggregations 16384 | ;
: postgres write

O Br0ken down by type value --------c-on Distribution —------------ coun +

o Timestamped for correlating with MPJBT logs o OO to700

16384 |@EEEEEEEER 6274
32768 |
65536 |
131072 |

VES Writes vs. Throu

125000
100000
75000
50000

25000

ghput - PostgreSQL

= Throughput

W >65536ns

W 65536ns

W 32768ns

® 16384ns
8192ns
4096ns

@ 2048ns

W 1024ns

VFS Writes vs. Throughput - MongoDB

125000 = Throughput
W >65536ns
W 655536ns
B 32768ns
16384ns
100000 Gl
4096ns
M 2048ns
B 1024ns
75000
50000
25000
0
0 1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Insert / Update / Select comparison

e Preloaded 10,000,000 records in the table
O No padding - records are ~320 bytes

e 3 clients running different workloads
o 50 workers inserting
o 50 workers updating
o 50 workers performing a range over partial index

e Both databases become CPU bound
o Database server is under maximum load
o Typically avoided in a production environment
o Always good to know your maximum numbers

MongoDB

Insert

99th%

13ms

Average

18,070 op/s

Update

99th%

Average

Select

99th%

12ms

Average

18,960 op/s

00000

00000

00000

00000

“ | | | ‘
“ : /M ’* il /j il il

PostgreSQL

Insert, Update and Select

80000
60000

40000

(\d‘ "\ J‘ / A
""l"m‘«W'MM*":\f"""'»'gr MQ; VoA s L ol W!‘ "‘”‘y\“" U, w,r AR

20000

2017/09/22 14:56:00 2017/09/22 14:57:00 2017/09/22 14:58:00 2017/09/22 14:59:00 2017/09/22 15:00:00 2017/09/22 15:01:00

PostgreSQL

Insert

99th%

4ms

Average

25,244 opls

Update

99th%

Average

Select

99th%

3ms

Average

27,778 opls

Workload - 1MB Inserts

150

100

99th Percentile Latency
e MongoDB => 4.5s
e PostgreSQL => 1.5s

Time in seconds

50

MongoDB PostgreS0L

Lower is better

CPU 35%

insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

)

655430p/s
651130p/s
69881lop/s
557280p/s
575020p/s
644280p/s
648720p/s
688040p/s
632040p/s
63279%0p/s

avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.

Insert Performance

Oms
Oms
Oms
Oms
Oms
Oms
bms
Oms
Oms
Oms

CPU 40%

insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

42011op/s
533300p/s
578150p/s
54331op/s
396160p/s
51919%0p/s
533660p/s
566780p/s
402830p/s
473000p/s

avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.

Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms

CPU 85%

update
update
update
update
update
update
update
update
update
update

)

2416 op/s
0 op/s
0 op/s
2856 op/s
214250p/s
0 op/s
0 op/s
127980p/s
1109%40op/s
213020p/s

avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.

Update Performance

Oms
Oms
Oms
33ms
Oms
Oms
Oms
Sms
Oms
Oms

CPU

update
update
update
update
update
update
update
update
update
update

312520p/s
327060p/s
33801op/s
282760p/s
34749%0p/s
299720p/s
285650p/s
322860p/s
309050p/s
320520p/s

%

avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.
avg.

Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms
Oms

So...why are we even using MongoDB?
PostgreSQL is awesome right?

autovacuum: VACUUM public.test@2 (to prevent wraparound)

Vacuum Performance - Insert Workload

40000
30000

Horizontally Scalable

Table Size Comparison

MongoDB and PostgreSQL

600 B Before Compression

B After Compression

400

Sizein GB

200

MongoDB PostgreSQL

~ 1 billion records

Lower is better

Summary

=
e
x
e ™
L]

WIIIINE 100% IIF THE
. TIME

Summary

e There is no such thing as the best database in the world!

e Choosing the right database for your application is never easy
o How well does it scale?
o How easy is it to perform upgrades?
o How does it behave under stress?
e \What is your application requirements?
o Do you really need ACID?

e Do your own research!

Summary - PostgreSQL

e PostgreSQL has poor performance out of the box

o Requires a decent amount of tuning to get good performance out of it
e Does not scale well with large number of connections

o pgBouncer is a must

e Combines ACID compliance with schemaless JSON

e Queries not really intuitive

Summary - MongoDB

e MongoDB has decent performance out of the box.
e Unstable throughput and latency

e Scale well with large number of connections

e Strong horizontal scalability

e Throughput bug is annoying

e MongoDB rolling upgrades are ridiculously easy

e Developer friendly - easy to use!

TODO

e Released MPJBT on Github

o Open source for all

o github.com/domodwyer/mpjbt
e Run similar tests against CitusDB
o You guys have inspired us to keep looking!

e Run performance test for MongoRocks (LSM)

Questions?

Thank You!

Like what you see”
We are hiring!
Come and speak to us!

C GlobalSign.

GMOINTERNET GROUP

References

e https://people.freebsd.org/~seanc/postgresqgl/scale15x-2017-postaresql zfs b
est practices.pdf

e https://jepsen.io/analyses/mongodb-3-4-0-rc3

e htips://dba.stackexchange.com/questions/167525/inconsistent-statistics-on-js
onb-column-with-btree-index

e https://github.com/domodwyer/mpijbt

e https://jira.mongodb.ora/browse/WT-3633

https://people.freebsd.org/~seanc/postgresql/scale15x-2017-postgresql_zfs_best_practices.pdf
https://people.freebsd.org/~seanc/postgresql/scale15x-2017-postgresql_zfs_best_practices.pdf
https://jepsen.io/analyses/mongodb-3-4-0-rc3
https://dba.stackexchange.com/questions/167525/inconsistent-statistics-on-jsonb-column-with-btree-index
https://dba.stackexchange.com/questions/167525/inconsistent-statistics-on-jsonb-column-with-btree-index
https://github.com/domodwyer/mpjbt
https://jira.mongodb.org/browse/WT-3633

Previous Benchmark Results

e http://tiborsimko.org/postgresgl-mongodb-json-select-speed.html
e http://erthalion.info/2015/12/29/json-benchmarks/

e https://www.enterprisedb.com/postagres-plus-edb-blog/marc-linster/postgres-o

utperforms-monqgodb-and-ushers-new-developer-reality
e https://pgconf.ru/media/2017/04/03/20170317H2 O.Bartunov json-2017.pdf

e https://www.slideshare.net/toshiharada/ycsb-jsonb

http://tiborsimko.org/postgresql-mongodb-json-select-speed.html
http://erthalion.info/2015/12/29/json-benchmarks/
https://www.enterprisedb.com/postgres-plus-edb-blog/marc-linster/postgres-outperforms-mongodb-and-ushers-new-developer-reality
https://www.enterprisedb.com/postgres-plus-edb-blog/marc-linster/postgres-outperforms-mongodb-and-ushers-new-developer-reality
https://pgconf.ru/media/2017/04/03/20170317H2_O.Bartunov_json-2017.pdf
https://www.slideshare.net/toshiharada/ycsb-jsonb

Appendix

pgbouncer.ini

e PostgreSQL does not support connection pooling

e PgBouncer is an extremely lightweight connection pooler

e Setting up and tearing down a new connection is expensive
e Each PostgreSQL connection forks a new process

e Configuration
o pool_mode = transaction
o max_client_conn = 300

+

PostgreSQL

postgresql.conf

shared_buffer = 16GB
max_connections = 400

fsync = on
synchronous_commit = on
full_page_writes = off
wal_compression = off
wal_buffers = 16MB
min_wal_size = 2GB
max_wal_size = 4GB
checkpoint_completion_target = 0.9
work_mem = 33554KB
maintenance_work_mem = 2GB
wal_level=replica

mongod.conf

e wiredTiger.engineConfig.cacheSizeGB: 19

e wiredTiger.engineConfig.journalCompressor: snappy
e wiredTiger.collectionConfig.blockCompressor: snappy
e wiredTiger.indexConfig.prefixCompression: true

e net.maxincomingConnections: 65536

e wiredTigerConcurrentReadTransactions: 256

e wiredTigerConcurrentWriteTransactions: 256

ZFS Tuning

No separate L2ZARC
No separate ZIL
1 dataset for O/S
1 dataset for data directory
o checksum=on
o atime=off
o recordsize=8K
O

compression=Iz4 (PostgreSQL) or off (MongoDB) O pe N Z FS

/boot/loader.conf

e kern.maxusers=1024

e kern.ipc.semmns=2048

e kern.ipc.semmni=1024

e Kkern.ipc.semmnu=1024

e kern.ipc.shmall=34359738368

e Kkern.ipc.shmmax=34359738368
e Kkern.ipc.maxsockets=256000

e kern.ipc.maxsockbuf=2621440
e kern.ipc.shmseg=1024

/etc/sysctl.conf

net.inet.tcp.keepidle=3000000
net.inet.tcp.keepintvl=60000
net.inet.tcp.keepinit=60000
security.jail.sysvipc_allowed=1
kern.ipc.shmmax=34359738368
kern.ipc.shmall=16777216
kern.ipc.shm_use_phys=1
kern.maxfiles=2621440
kern.maxfilesperproc=2621440
kern.threads.max_threads_per_ proc=65535
kern.ipc.somaxconn=65535
kern.eventtimer.timer=HPET
kern.timecounter.hardware=HPET
vfs.zfs.arc_max: 8589934592 for PostgreSQL or 1073741824 for MongoDB

