
High Performance JSON
PostgreSQL vs. MongoDB

FOSDEM PGDay 2018
Dominic Dwyer
Wei Shan Ang

VS

GlobalSign
● GlobalSign identity & crypto services provider

● WebTrust certified Certificate Authority - 3rd in the world

● High volume services - IoT devices, cloud providers

● Cryptographic identities, timestamping, signing, etc

About Me
● Database Engineer with 6 years of experience

● From Singapore but now based in London

● Originally worked on Oracle systems

● Switched to open-source databases in 2015

● Currently working in GlobalSign as a “Data Reliability Engineer”

Motivation

● Most benchmark results are biased - commercial interests

● We feel that benchmark results are measured “creatively”

● We use PostgreSQL and MongoDB a lot!

● We wanted to test the latest versions

PostgreSQL

PostgreSQL
● Around for 21 years
● JSON supported since 9.2
● JSONB supported since 9.4
● Does not have any statistics about the internals of document types like JSON

or JSONB
○ Can be overcome with default_statistics_target or ALTER TABLE TABLE_NAME ALTER int4

SET STATISTICS 2000;

● Many JSON/JSONB operator/functions released since 9.2 (jsonb_set,
jsonb_insert)

● Many JSON/JSONB bug fixes too

PostgreSQL Ecosystem
● “Build it yourself”

● Many High Availability solutions - all 3rd party
○ repmgr, pacemaker/corosync, Slony, Patroni and many more

● Connection Pooling
○ pgBouncer (single-threaded), pgpool-II

● Sharding
○ CitusDB

● Live version upgrades - tricky!
○ pg_upgrade, Slony, pg_dump and pg_logical

MongoDB

MongoDB
● Relatively “young” database software

○ 8 years since first release

● Known as a /dev/null database in the early days (jepsen.io)

○ Tremendous stability improvements since then
○ All known reliability issues has been fixed since 3.2.12

● Lots of WiredTiger bug fixes since 3.2
○ Cache eviction
○ Checkpoints
○ Lost updates and dirty writes

Source: jepsen.io

● Everything comes as standard:

○ Built-in replication

○ Built-in sharding

○ Live cluster version upgrades (ish)

■ Shutdown slave, upgrade slave, startup slave, repeat

MongoDB

Server Hardware
● 2x Intel(R) Xeon(R) CPU E5-2630 v4

○ 20 cores / 40 threads

● 32GB Memory

● FreeBSD 11

● ZFS file system

● 2 x 1.6TB (Intel SSD DC S3610, MLC)

Why do we use ZFS?
● Highly tunable filesystem

○ Layered caching (ARC, L2ARC, ZIL)

○ Advanced cache algorithm

■ Most Recently Used (MRU)

■ Most Frequently Used (MFU)

● Free snapshots

● Block level checksums

● Fast compression

● Nexenta, Delphix, Datto, Joyent, Tegile, Oracle (obviously) and many more!

The Setup

● 1-3 Client machines (depending on the test)

● 1 Server, two jails - one for Postgres & one for Mongo

● PostgreSQL 9.6.5 with pgBouncer 1.7.2

● MongoDB 3.4.9 with WiredTiger

Performance Tuning
● We had to tune PostgreSQL heavily

○ System V IPC (shmmax, shmall, semmns and etc)
○ pgBouncer (single threaded, we need multiple instances to handle the load)

● MongoDB tuning was easy!
○ WiredTiger cache size
○ Compression settings
○ Default settings are usually good enough

● ZFS tuning
○ atime
○ recordsize
○ checksum
○ compression

Sample JSON Document
{
 "_id" : NumberLong(2),
 "name" : "lPAyAYpUvUDGiCd",
 "addresses" : [
 {
 "number" : 59,
 "line1" : "EPJKLhmEPrrdYqaFxxEVMF",
 "line2" : "Rvlgkmb"
 },
 {
 "number" : 59,
 "line1" : "DdCBXEW",
 "line2" : "FEV"
 }
],
 "phone_number" : "xPOYCOfSpieIxbGxpYEpi",
 "dob" : ISODate("2017-09-05T00:03:28.956Z"),
 "age" : 442006075,
 "balance" : 0.807247519493103,
 "enabled" : false,
 "counter" : 442006075,
 "padding" : BinData(0,"")
}

Sub-documents

Varying field types

Randomised binary blob

About Me
● Engineer on the High Performance Platforms team

○ Our team builds a high volume CA platform & distributed systems
○ Based in Old Street, London
○ Greenfields project, all new stuff!

● Day job has me breaking all the things
○ Simulating failures, network partitions, etc
○ Assessing performance and durability

● Maintain performance fork of Go MongoDB driver
○ github.com/globalsign/mgo

MPJBT Benchmark Tool
● MongoDB PostgreSQL JSONB Benchmarking Tool

○ Seriously, we’re open to better names…….

● Written in Golang

● Open source!

● Models typical workloads (but maybe not yours!)
○ Inserts, selects, select-updates, range queries, etc.

● Lockless outside of the database drivers
○ Low contention improves ability to push servers

Why Go?
● Designed from the start for high concurrency

○ Thousands of concurrent workers is totally fine

● Co-operative scheduler can maximise I/O throughput
○ When blocked, Go switches to another worker
○ Blocked worker is woken up when it’s unblocked
○ Much cheaper context switching - occurs in userland

● Familiarity - I use it every day!

Does it deliver?

Insert 10,000,000 records

Average isn’t very helpful
● I have an average of 52.2ms

Average isn’t very helpful
● I have an average of 52.2ms

120.080231
36.237584
25.904811
44.053916
66.617778
59.713100
74.620329
1.689589
90.641940
27.202953

51.162331
52.202392
52.511745
50.439697
52.975609
52.567941
53.067609
52.122890
51.159180
52.390616

OR

Inserts - Latency Histogram

Inserts - Latency Histogram
1s 2s 3s

Inserts - Throughput

insert 30877op/s avg.0ms
insert 27509op/s avg.0ms
insert 29997op/s avg.0ms
insert 31143op/s avg.0ms
insert 22576op/s avg.0ms
insert 0op/s avg.0ms
insert 0op/s avg.0ms
insert 1op/s avg.2561ms
insert 0op/s avg.0ms
insert 20703op/s avg.6ms
insert 31154op/s avg.0ms
insert 31298op/s avg.0ms
insert 30359op/s avg.0ms

insert 26081op/s avg.0ms
insert 25938op/s avg.0ms
insert 26649op/s avg.0ms
insert 26009op/s avg.0ms
insert 26029op/s avg.0ms
insert 25522op/s avg.0ms
insert 25960op/s avg.0ms
insert 26000op/s avg.0ms
insert 25576op/s avg.0ms
insert 26159op/s avg.0ms
insert 25628op/s avg.0ms
insert 26071op/s avg.0ms
insert 25856op/s avg.0ms

MongoDB cache eviction bug?
● Show some cool graphs
● https://jira.mongodb.org/browse/SERVER-29311
●

https://jira.mongodb.org/browse/SERVER-29311

MongoDB cache eviction bug - not a bug?
● Reported to MongoDB

○ https://jira.mongodb.org/browse/SERVER-29311
○ Offered to run any tests and analyse data

● Ran 36 different test combinations
○ ZFS compression: lz4, zlib, off
○ MongoDB compression: snappy, zlib, off
○ Filesystem block sizes
○ Disk configurations
○ Tried running on Linux/XFS

● Always saw the same pauses
○ Described as an I/O bottleneck

(twice!)

https://jira.mongodb.org/browse/SERVER-29311

Profile with Dtrace!
● Dynamic tracer built into FreeBSD (and others)

○ Originally created by Sun for Solaris
○ Ported to FreeBSD
○ Low profiling overhead

● Traces in both kernel and userspace
○ Hook syscalls, libc, application functions, etc
○ Access function arguments, kernel structures, etc

● Hooks expressed in D like DSL
○ Conditionally trigger traces
○ Really simple to use

Trace the Virtual File System
● Measures application file system operations

○ Kernel level
○ File system agnostic (XFS, ZFS, anything)

● Records data size & latency:
○ Reads - vfs::vop_read
○ Writes - vfs::vop_write

● Configured to output ASCII histograms
○ Per second aggregations
○ Broken down by type
○ Timestamped for correlating with MPJBT logs

VFS Writes vs. Throughput - PostgreSQL

VFS Writes vs. Throughput - MongoDB

Insert / Update / Select comparison
● Preloaded 10,000,000 records in the table

○ No padding - records are ~320 bytes

● 3 clients running different workloads
○ 50 workers inserting
○ 50 workers updating
○ 50 workers performing a range over partial index

● Both databases become CPU bound
○ Database server is under maximum load
○ Typically avoided in a production environment
○ Always good to know your maximum numbers

MongoDB

Insert

99th%

13ms

Average

18,070 op/s

Update

99th%

11ms

Average

22,304 op/s

Select

99th%

12ms

Average

18,960 op/s

MongoDB

PostgreSQL

PostgreSQL

Insert

99th%

4ms

Average

25,244 op/s

Update

99th%

4ms

Average

26,085 op/s

Select

99th%

3ms

Average

27,778 op/s

Workload - 1MB Inserts

Lower is better

99th Percentile Latency
● MongoDB => 4.5s
● PostgreSQL => 1.5s

Insert Performance

CPU 35%
insert 65543op/s avg.0ms
insert 65113op/s avg.0ms
insert 69881op/s avg.0ms
insert 55728op/s avg.0ms
insert 57502op/s avg.0ms
insert 64428op/s avg.0ms
insert 64872op/s avg.6ms
insert 68804op/s avg.0ms
insert 63204op/s avg.0ms
insert 63279op/s avg.0ms

insert 42011op/s avg.0ms
insert 53330op/s avg.0ms
insert 57815op/s avg.0ms
insert 54331op/s avg.0ms
insert 39616op/s avg.0ms
insert 51919op/s avg.0ms
insert 53366op/s avg.0ms
insert 56678op/s avg.0ms
insert 40283op/s avg.0ms
insert 47300op/s avg.0ms

CPU 40%

Update Performance

CPU 85%
update 2416 op/s avg.0ms
update 0 op/s avg.0ms
update 0 op/s avg.0ms
update 2856 op/s avg.33ms
update 21425op/s avg.0ms
update 0 op/s avg.0ms
update 0 op/s avg.0ms
update 12798op/s avg.5ms
update 11094op/s avg.0ms
update 21302op/s avg.0ms

update 31252op/s avg.0ms
update 32706op/s avg.0ms
update 33801op/s avg.0ms
update 28276op/s avg.0ms
update 34749op/s avg.0ms
update 29972op/s avg.0ms
update 28565op/s avg.0ms
update 32286op/s avg.0ms
update 30905op/s avg.0ms
update 32052op/s avg.0ms

CPU 65%

So...why are we even using MongoDB?
PostgreSQL is awesome right?

Vacuum Performance - Insert Workload

Horizontally Scalable

Table Size Comparison

Lower is better

Summary

Summary
● There is no such thing as the best database in the world!

● Choosing the right database for your application is never easy
○ How well does it scale?

○ How easy is it to perform upgrades?

○ How does it behave under stress?

● What is your application requirements?
○ Do you really need ACID?

● Do your own research!

Summary - PostgreSQL
● PostgreSQL has poor performance out of the box

○ Requires a decent amount of tuning to get good performance out of it

● Does not scale well with large number of connections
○ pgBouncer is a must

● Combines ACID compliance with schemaless JSON

● Queries not really intuitive

Summary - MongoDB
● MongoDB has decent performance out of the box.

● Unstable throughput and latency

● Scale well with large number of connections

● Strong horizontal scalability

● Throughput bug is annoying

● MongoDB rolling upgrades are ridiculously easy

● Developer friendly - easy to use!

TODO
● Released MPJBT on Github

○ Open source for all

○ github.com/domodwyer/mpjbt

● Run similar tests against CitusDB
○ You guys have inspired us to keep looking!

● Run performance test for MongoRocks (LSM)

Thank You!
Like what you see?

We are hiring!
Come and speak to us!

Questions?

References
● https://people.freebsd.org/~seanc/postgresql/scale15x-2017-postgresql_zfs_b

est_practices.pdf
● https://jepsen.io/analyses/mongodb-3-4-0-rc3
● https://dba.stackexchange.com/questions/167525/inconsistent-statistics-on-js

onb-column-with-btree-index
● https://github.com/domodwyer/mpjbt
● https://jira.mongodb.org/browse/WT-3633

https://people.freebsd.org/~seanc/postgresql/scale15x-2017-postgresql_zfs_best_practices.pdf
https://people.freebsd.org/~seanc/postgresql/scale15x-2017-postgresql_zfs_best_practices.pdf
https://jepsen.io/analyses/mongodb-3-4-0-rc3
https://dba.stackexchange.com/questions/167525/inconsistent-statistics-on-jsonb-column-with-btree-index
https://dba.stackexchange.com/questions/167525/inconsistent-statistics-on-jsonb-column-with-btree-index
https://github.com/domodwyer/mpjbt
https://jira.mongodb.org/browse/WT-3633

Previous Benchmark Results
● http://tiborsimko.org/postgresql-mongodb-json-select-speed.html

● http://erthalion.info/2015/12/29/json-benchmarks/

● https://www.enterprisedb.com/postgres-plus-edb-blog/marc-linster/postgres-o

utperforms-mongodb-and-ushers-new-developer-reality

● https://pgconf.ru/media/2017/04/03/20170317H2_O.Bartunov_json-2017.pdf

● https://www.slideshare.net/toshiharada/ycsb-jsonb

http://tiborsimko.org/postgresql-mongodb-json-select-speed.html
http://erthalion.info/2015/12/29/json-benchmarks/
https://www.enterprisedb.com/postgres-plus-edb-blog/marc-linster/postgres-outperforms-mongodb-and-ushers-new-developer-reality
https://www.enterprisedb.com/postgres-plus-edb-blog/marc-linster/postgres-outperforms-mongodb-and-ushers-new-developer-reality
https://pgconf.ru/media/2017/04/03/20170317H2_O.Bartunov_json-2017.pdf
https://www.slideshare.net/toshiharada/ycsb-jsonb

Appendix

pgbouncer.ini
● PostgreSQL does not support connection pooling

● PgBouncer is an extremely lightweight connection pooler

● Setting up and tearing down a new connection is expensive

● Each PostgreSQL connection forks a new process

● Configuration
○ pool_mode = transaction
○ max_client_conn = 300

postgresql.conf
● shared_buffer = 16GB
● max_connections = 400
● fsync = on
● synchronous_commit = on
● full_page_writes = off
● wal_compression = off
● wal_buffers = 16MB
● min_wal_size = 2GB
● max_wal_size = 4GB
● checkpoint_completion_target = 0.9
● work_mem = 33554KB
● maintenance_work_mem = 2GB
● wal_level=replica

mongod.conf
● wiredTiger.engineConfig.cacheSizeGB: 19

● wiredTiger.engineConfig.journalCompressor: snappy

● wiredTiger.collectionConfig.blockCompressor: snappy

● wiredTiger.indexConfig.prefixCompression: true

● net.maxIncomingConnections: 65536

● wiredTigerConcurrentReadTransactions: 256

● wiredTigerConcurrentWriteTransactions: 256

ZFS Tuning
● No separate L2ARC
● No separate ZIL
● 1 dataset for O/S
● 1 dataset for data directory

○ checksum=on
○ atime=off
○ recordsize=8K
○ compression=lz4 (PostgreSQL) or off (MongoDB)

/boot/loader.conf
● kern.maxusers=1024

● kern.ipc.semmns=2048

● kern.ipc.semmni=1024

● kern.ipc.semmnu=1024

● kern.ipc.shmall=34359738368

● kern.ipc.shmmax=34359738368

● kern.ipc.maxsockets=256000

● kern.ipc.maxsockbuf=2621440

● kern.ipc.shmseg=1024

/etc/sysctl.conf
● net.inet.tcp.keepidle=3000000
● net.inet.tcp.keepintvl=60000
● net.inet.tcp.keepinit=60000
● security.jail.sysvipc_allowed=1
● kern.ipc.shmmax=34359738368
● kern.ipc.shmall=16777216
● kern.ipc.shm_use_phys=1
● kern.maxfiles=2621440
● kern.maxfilesperproc=2621440
● kern.threads.max_threads_per_proc=65535
● kern.ipc.somaxconn=65535
● kern.eventtimer.timer=HPET
● kern.timecounter.hardware=HPET
● vfs.zfs.arc_max: 8589934592 for PostgreSQL or 1073741824 for MongoDB

