

Securing PostgreSQL

Christophe Pettus
PostgreSQL Experts, Inc.
PGDay FOSDEM 2018

Greetings!

• Christophe Pettus

• CEO, PostgreSQL Experts, Inc.

• thebuild.com — personal blog.

• pgexperts.com — company website.

• Twitter @Xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com

We’re Here To Do The Impossible.

• “Security” is not a single topic or a single
practice.

• Essentially everything you do has security
implications.

• Perfect security is impossible.

• All life is a tradeoff, followed by certain
death.

Be calm.

• Every installation makes tradeoffs on utility,
convenience, and security.

• Almost no one does everything we’ll do
here. That’s (probably) OK.

• Just make sure you understand what the
risks are, and how to mitigate them.

Setting Expectations.

• Not: compliance with specific security
standards.

• Generic “acceptable” security for most
commercial organizations.

• See Joe Conway’s “Securing PostgreSQL”
talk or my talk on PCI for detailed
compliance notes.

The Stack.

• Host system.

• PostgreSQL itself.

• Access to the database server.

• The data in PostgreSQL.

• Encryption, permissions, etc.

• The application.

The Host.

• If the database server host is compromised,
nothing else matters.

• Assume that local privilege escalation will
always be a thing.

• Always assume a local user can get root.

• … because they probably almost
certainly can.

Minimize Attack Surface.

• Always put your database server behind a
firewall / VPC.

• Never expose port 5432 to the public
internet.

• On AWS, everything is the public internet.

Google
“CloudPets Breach”

Inter-VM Security.

• All that is solid melts into air.

• Consider asking cloud providers to do
single-client provisioning on hosts.

• Not all cloud providers offer this.

• But push. Post-Spectre, inter-VM security
cannot be guaranteed.

No Direct SSH.

• Do not allow direct public logins via SSH to
the database host. Require a hop through a
specific bastion host.

• Restrict access to the bastion host by VPN
or IP; do not simply trust bare SSH (even
on a nonstandard port).

• Everyone tries 2222 now. C’mon.

You Don’t Need That.

• Don’t run unnecessary services on your
database host.

• No application server, IRC server, mail
server, giant mysterious Java VM the last
sysadmin installed…

• Run nmap against it and see what’s open.

iptables is your friend.

• Or whatever local firewall you have.

• Restrict access just to expected servers.

• Don’t rely on just pg_hba.conf.

• Especially important in a cloud hosting
environment.

And Do The Basics.

• For system administration, use specific
users and sudo; never, ever allow root
logins.

• Use a password manager.

• For critical passwords, use split passwords
with dual custody.

Keep up to date!

• Always subscribe to the pgsql-announce
list.

• Always immediately apply any security-
related updates.

• Also subscribe to the appropriate security
list for your platform.

• Keep up to date with patches, already!

Apply Patches Promptly.

• Make it someone’s job.

• Make sure they do it.

• Never, ever allow a critical security patch
to go unheeded.

• If you know about it, attackers do too.

In a perfect world…

• Use multi-factor authentication for all
logins (VPN, host, etc.).

• Use LDAP for all logins (so that credentials
can be revoked globally).

• Require password rotation.

• At an absolute minimum, never reuse
passwords.

Google
“codespaces”

Just a note.

• Kerberos works too, and is probably better
than LDAP.

• LDAP is much more common.

• LDAP is easier to fit onto slides.

The Glass House

• Make sure your machines are properly
secured in the data center.

• This means real security (access control,
video, mantrap, biometrics) on your server
room.

• Make sure your cloud provider provides
this for the cloud they are providing to you!

• Terminate SSL local to the machine that
will use the sensitive data.

• Do not use front-end SSL termination or
acceleration.

• SSL is not that computationally expensive.

• Interior networks are not that secure.

Terminate SSL Locally.

Google
“cloudbleed”

pg_hba.conf

TYPE DATABASE USER ADDRESS METHOD
local all all trust

TYPE DATABASE USER ADDRESS METHOD
local all all trust

Securing the Database Instance.

• There is no such thing as “trust” mode
authentication. Forget it ever existed.

• Always require specific users, even
superusers.

• Do not use the postgres Unix or database
user. Require specific users.

• LDAP is your “friend,” here.

But what about “postgres”?

• Create a nasty password for it, keep it in
dual custody.

• Never use it except in dire emergency.

• Don’t allow non-local logins for it (or any
other superuser).

• Don’t use it for routine system
administration tasks.

listen_address

• Set it to the specific addresses that you
know are on the right networks.

• listen_address = ‘*’ is for the brave.

• In a cloud environment, you can’t always
guarantee that all interfaces are within a
VPC.

pg_hba.conf

• Use LDAP to manage credentials.

• Every user and role should have its own
PostgreSQL role.

• Only grant the permissions that role
actually needs.

• A data analyst does not need to drop
tables.

Passwords.

• If not using LDAP, PostgreSQL passwords
must be singletons.

• MD5 passwords might as well be cleartext
at this point. (SCRAM is much better.)

• Don’t reuse PostgreSQL user passwords
anywhere else.

• Make them horrible and long.

“web”

• Most common bad habit: the singleton web
user that can do anything.

• This is made worse by some frameworks’
migration system.

• Fight it. Only give app roles the minimum
that they need to work.

• Lock it down to app server IPs.

Connections.

• Require SSL and properly-signed
certificates.

• Especially in cloud environments.

• Anything less runs the risk of MitM attacks.

Data Security.

• Every database has sensitive information.

• Just customer and order info is sensitive.

• Some things are really sensitive.

• Credit cards, health records, utility bills…

• Essential to protect it against theft.

“We’ll Just Park Here.”

• “No problem! We’ve layered luks on top of
lvm on top of EBS, and we’re all set!”

• No.

• Full disk encryption is useless.

• Let me say that again.

FULL DISK ENCRYPTION IS USELESS.

FDE protects against…

• … theft of the media.

• That’s it.

• That is about 0.00000002% of the actual
intrusions that you have to worry about.

• Easy rule: If psql can read it in cleartext, it’s
not secure.

• (It’s a great idea for laptops, of course.)

That Being Said.

• Sometimes, regulations or contracts
require full-disk encryption.

• Ugh. Fine.

• Make sure your key management is safe.

• Don’t bake keys into startup scripts, etc.

Per-Column Encryption.

• Always encrypt specific columns, not entire
database or disk.

• Better performance, higher security.

• Key management is a pain.

• Automatic restart in a high-security
environment is essentially impossible.

• Assume a human will be in the loop.

Per-Column Techniques.

• Encrypt each column as TEXT or bytea.

• Good for small items: credit cards, etc.

• Create a JSON blob, encrypt that, store it
as bytea.

• More complex things, like medical
records.

Good Crypto Hygiene.

• Use a well-known secure algorithm
(AES256 is considered the standard).

• Never roll your own crypto.

• Use a well-known library designed by
specialists. (And don't use ECB.)

• Do not bake keys into code or store them
in repositories.

Indexing.

• You often have to store a partial version, or
hash, of a value for indexing purposes.

• Example: CSRs may need to look up an
order by credit card number.

• There’s nothing wrong with this, BUT:

Be careful with hashes!

• It’s very easy to reverse some hashes,
especially if you have partial data!

• Store the minimum necessary.

• Use a strong hash (not MD5).

So, how about pgcrypto?

• pgcrypto is a /contrib module that contains
cryptography functions.

• Why not use it to encrypt the data?

• I mean, it’s just sitting there, right?

INSERT INTO super_secret_table(card)
 VALUES( 
 pgp_sym_encrypt(‘4111111111111111’,
 ‘mysuperpassword’));

2016-05-19 10:40:42.524 PDT,"xof","xof",
99245,"[local]",573dfa20.183ad,9,"INSERT",
2016-05-19 10:38:40 PDT,2/0,0,LOG,
00000,"duration: 1.712 ms statement: INSERT
INTO super_secret_table(card)
VALUES(pgp_sym_encrypt('4111111111111111',
'mysuperpassword'));",,,,,,,,,"psql"

Not so great.

• Be careful about what you expose in text
logs.

• That “diagnostic” pgbadger run with
log_min_statement_duration = 0?

• Always do the encryption in the application,
not in the database.

Log Everything!

• Connections, disconnections, DML changes.

• Make sure logs are kept secure and cannot
be tampered with (rsyslog, etc.)

• Make sure that the log record can be
traced back to an individual person.

• Log all activity by directly-connecting users
(as opposed to the application).

BUT!

• Make sure you are not logging sensitive
information in cleartext!

• This is another good reason to encrypt in
the application, not in the database.

Restrict the Data.

• … don’t give every developer production
system access.

• … identify and qualify the system
administrators who need global system
access.

• … scrub data that comes out of production
for development testing.

Backup Security.

• Be sure your backups are as secure as your
primary database.

• A recent backup is just as good as your
production system for a data theft.

• If using a shared cloud store like S3, make
sure contents are properly encrypted and
private.

Row-Level Security.

• Restricts access to data by row, rather than
just by database object.

• Conceptually, a “mandatory view” applied
based on access controls.

• Allows removal of sensitive columns, multi-
tenancy in a table, etc.

Application Security.

• After all that, this is not where most
breaches happen.

• Most breaches are either application
breaches or malware-infected clients.

• POS tills, compromised user workstations.

Application Basics.

• Always use proper parameter substitution
in your library!

• Never build SQL by text substitution unless
it is absolutely necessary (for example,
variable table names).

• All user input is hostile and wants to kill
you all the time.

API Hygiene.

• Always require TLS 1.2 for all remote APIs.

• For dedicated clients (mobile apps, etc.) use
proper certificate management.

• Make API keys long, unique, and random.

• Log everything.

Prepare for War.

• Detect unusual access patterns and take
action.

• Blocking, rate-limiting, admin alerts, etc.

• Users will generally share passwords across
systems.

• Use Captchas to reduce automated
attack risks.

Application Testing.

• Make security testing a critical part of
testing.

• Always write tests that deliberately try to
get around security controls.

• Get new engineers to try to hack your
system, and praise them highly if they do.

Basic Infosec.

• Run appropriate malware-detecting email
services.

• Use all of the OS vendor’s anti-virus
tools.

• Third-party tools often hurt more than
they help.

• Follow @SwiftOnSecurity.

Trust, but Verify.

• Hire external penetration testing firms.
Encourage developers to poke at security.

• Hire security audit companies that actually
understand security, not just run pen test
scripts.

This actually happened.

• “We need you to disable your firewall.”

• “Um, why?”

• “Our penetration test script is failing
because the firewall won’t let it through.”

• “This… sounds kind of like what a
firewall is supposed to do, to me.”

Oh, and.

GDPR

25 May 2018

We’re doomed.

• Data security is a lot of work.

• You will never be perfectly secure.

• Even the most secure companies get
intrusions.

• Life is full of pain and despair.

Have hope!

• Do as much “set it and forget it” security as
possible.

• Without the “forget it” part.

• Do regular audits and destruction tests
(great things for new engineers to do).

• Be sure that the company, from the top,
takes security seriously.

Life is full of tough choices.

• You will always trade off some security for
convenience.

• But don’t get complacent and have
convenience become the most important
thing.

• Make security one of the things the
organization is proud of!

thebuild.com
pgexperts.com

Questions?

Christophe Pettus
@xof  

thebuild.com
pgexperts.com

Thank you!

Christophe Pettus
@xof  

