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Who am I?

• Bioinformatics = computational biology

• Analysis of data to gain new biological insights

• Molecular biology

• Head of research group for drug bioinformatics at 
Helmholtz Institute for Pharmaceutical Research Saarland

• Find new bioactive compounds
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Where does the data 
come from?
• Experiment

• Genome sequencing

• => ~4×1012 bp

• Other types of experiment

• Determination of protein 3D 
structure

• Gene expression

• Computational predictions
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How BIG is the data?

• All DNA sequences: ~4×1012 bp = ~9 GB + metadata

• In this talk:

• Clinically relevant mutations: 13 MB = 84,426 rows

• All human proteins + annotations: 1.9 GB = 23,095,049 rows

• (Cross-references from human proteins to other data sources: 
147 MB = 6,026,631 rows)
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Experiment (up to TBs of data)

Initial data processing, cross-referencing

Store in a DB

Select relevant data

Write to disc (text files, MBs to GBs)

Analyze with dedicated statistical software (Python, SAS, R), 
typically in RAM
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R programming 
language
• Free software environment for statistical computing and 

graphics

• Introduced in 1993

• Multi-paradigm, including array: many generalized 
functions for multi-dimensional data (vectors, matrices, …) 

• R project: https://www.r-project.org/ 

• CRAN — 13,626 packages for various types of analysis: 
https://cran.r-project.org/ 
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R

• R is still widely used, 
especially in academia

• R is very well suited to do 
statistical / machine learning

• Due to details of 
implementation, calculations 
in R are very efficient

Source: https://www.burtchworks.com/2017/06/19/2017-sas-r-
python-flash-survey-results/!8
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PL/R

• Procedural language that allows to write PostgreSQL 
functions and aggregate functions in R

• Developed by Joe Conway since 2003

• Implements full R functionality
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This talk

• No technical details of implementation or management


• User perspective
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Is it possible to do full 
cycle of data analysis 

using only PL/R?
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Biological molecules:  
DNA, RNA, proteins
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Mutations
• Happen in DNA

• Sources:


• Spontaneous mistakes of DNA polymerase


• Endogenous DNA damage


• Exogenous DNA damage

• Repair mechanisms => 1 mutation in 1010 nucleotides 
per cell division

• Cf. human genome size: 3 × 109 bp
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Protein thermodynamic 
stability
• Simple case: protein can 

unfold and refold rapidly, 
reversibly, via a two-state 
mechanism

• ΔG = Gunfolded − Gfolded

• Upon mutations, ΔG can 
change:  
ΔΔG = ΔGmut − ΔGWT



Some data (real-life)

• ΔΔG estimates upon mutations

#chr Gene   ClinicalSignificance uniprot_ac uniprot_pos aa1 aa2 FX_ddG
chr1 ISG15  Benign               P05161     83          S   N   -0.517133
chr2 DNMT3A Pathogenic           Q9Y6K1     583         C   Y   33.0787
chr1 AGRN   Benign               O00468-6   15          P   R   ?

…

• 84,426 rows (13 MB) 
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Reading the data (R)

> x<-read.table("clinvar.main.pph.ddg.uniprot.tsv", 
sep=‘\t’, header=T)  
> x[ x == “?” ] <- NA  
> nrow(x)
84426

• => data frame

!18



Reading the data 
(Postgres)

kalinina=# CREATE TABLE clinvar (chr text, to1 bigint, ref text, 
alt text, GeneSymbol text, ClinicalSignificance text, 
ReviewStatus text, PhenotypeList text, uniprot_ac text, 
uniprot_pos int, aa1 char(1), aa2 char(1), prediction text, 
PDB_id text, PDB_pos text, PDB_ch char(1), ident float, FX_ddG 
float, IM_ddG float, M_ddG float, M_conf float);
CREATE TABLE

kalinina=# COPY clinvar FROM 'clinvar.main.pph.ddg.uniprot.tsv' 
WITH (NULL '?', DELIMITER E'\t');
COPY 84426
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Calculate median (R)
>median(x$FX_ddG)  
[1] NA
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Calculate median (R)
>median(x$FX_ddG)  
[1] NA

>median(x$FX_ddG, na.rm=TRUE)  
[1] 0.974858

>(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG)  
[1] 1.7756

> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = 
median)  
    ClinicalSignificance FX_ddG  
1                 Benign 0.62209  
2             Pathogenic 1.77560
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Calculate median (PL/R)
kalinina=# CREATE or REPLACE FUNCTION r_median(_float8) RETURNS 
float AS '
median(arg1)
' LANGUAGE 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE median (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_median
);
CREATE AGGREGATE

kalinina=# SELECT clinicalsignificance, median(fx_ddg) FROM clinvar 
GROUP BY clinicalsignificance ORDER BY clinicalsignificance;

clinicalsignificance | median
---------------------+----------
Benign               | 0.6220875
Pathogenic           | 1.7756
(2 rows)
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Summary statistics (R)
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> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = summary)
    ClinicalSignificance FX_ddG.Min. FX_ddG.1st Qu. FX_ddG.Median FX_ddG.Mean FX_ddG.3rd Qu. FX_ddG.Max.
1                 Benign    -5.77969       -0.04082       0.62209     1.37172       1.91954     62.08970
2             Pathogenic   -18.09830        0.30438       1.77560     3.21887       4.21793     52.26050
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Summary statistics (R)
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> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = summary)
    ClinicalSignificance FX_ddG.Min. FX_ddG.1st Qu. FX_ddG.Median FX_ddG.Mean FX_ddG.3rd Qu. FX_ddG.Max.
1                 Benign    -5.77969       -0.04082       0.62209     1.37172       1.91954     62.08970
2             Pathogenic   -18.09830        0.30438       1.77560     3.21887       4.21793     52.26050

> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = summary)
    ClinicalSignificance FX_ddG.Min. FX_ddG.1st Qu. FX_ddG.Median
1                 Benign    -5.77969       -0.04082       0.62209
2             Pathogenic   -18.09830        0.30438       1.77560

FX_ddG.Mean FX_ddG.3rd Qu. FX_ddG.Max.
    1.37172       1.91954     62.08970
    3.21887       4.21793     52.26050

You need additional code if you need to preserve a specific order of 
categories




Summary statistics 
(PL/R)

kalinina=# CREATE or REPLACE FUNCTION r_summary(_float8) RETURNS _float8 AS '
summary(arg1)
' LANGUAGE 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE summary (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_median
);
CREATE AGGREGATE

kalinina=# SELECT clinicalsignificance, SELECT summary(fx_ddg) FROM clinvar GROUP BY 
clinicalsignificance ORDER BY clinicalsignificance;

clinicalsignificance | summary
---------------------+--------------------------------------------------------------------
Benign               | {-5.77969,-0.040819875,0.6220875,1.37171750416516,1.9195375,62.0897}
Pathogenic           | {-18.0983,0.3043845,1.7756,3.21886833468419,4.217925,52.2605}
(2 rows)
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Boxplot (R)
>boxplot(x[ x$ClinicalSignificance == ‘Pathogenic’, ]$FX_ddG)
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>boxplot(x[ x$ClinicalSignificance == ‘Pathogenic’, ]$FX_ddG)

• Syntax for subsetting: 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• Output directly to active graphic  
device

>boxplot(x[ x$ClinicalSignificance == ‘Pathogenic’, ]$FX_ddG)

Boxplot (R)
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Boxplot (PL/R)
CREATE or REPLACE function 
r_boxplot2(_float8) RETURNS void AS '
pdf(“~/Work/ddG/test.pdf”)
boxplot(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE boxplot2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_boxplot2
);
CREATE AGGREGATE

kalinina=# SELECT boxplot2pdf(fx_ddg) 
FROM clinvar WHERE clinicalsignificance = 
'Pathogenic';
 boxplot2pdf 
-------------
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Boxplot (PL/R)
CREATE or REPLACE function 
r_boxplot2(_float8) RETURNS void AS '
pdf(“~/Work/ddG/test.pdf”)
boxplot(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE boxplot2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_boxplot2
);
CREATE AGGREGATE

kalinina=# SELECT boxplot2pdf(fx_ddg) 
FROM clinvar WHERE clinicalsignificance = 
'Pathogenic';
 boxplot2pdf 
-------------
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Only output to file



More data (real-life)

• Structural annotation of the human proteome

#AC      Mut       Species Tags  Surface/Core  Class  
 P30613  R498      HUMAN   None  Surface       Ligand
 P30613  G411      HUMAN   None  Core          Core 
 P30613  R559      HUMAN   None  None          Disorder

• Every protein position is classified as Surface, Core, 
Ligand, Metal, Protein, DNA, RNA, or Disorder  
(8 categories)


• 23,095,049 rows (1.9 GB)

!32



Pie chart (R)
> p <- read.table(“proteome.classification.tsv”, sep=“\t”)
> p[ p == “None” ] <- NA
> pp <- p[p$Class <> ‘Disorder’, ]
> piedata <- aggregate(pp$AC, by=list(Category=pp$Class), FUN=length)
> piedataOrdered <- piedata[ order(-piedata$x), ]
> piedataOrdered
  Category       x
7  Surface 6411178
1     Core 4519347
5  Protein 2228705
3   Ligand  934970
4    Metal  830419
2      DNA  265432
6      RNA   69701

> pie(piedataOrdered$x/nrow(pp),  
  labels=piedataOrdered$Category)
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Pie chart (R)
> p <- read.table(“proteome.classification.tsv”, sep=“\t”)
> p[ p == “None” ] <- NA
> pp <- p[p$Class <> ‘Disorder’, ]
> piedata <- aggregate(pp$AC, by=list(Category=pp$Class), FUN=length)
> piedataOrdered <- piedata[ order(-piedata$x), ]
> piedataOrdered
  Category       x
7  Surface 6411178
1     Core 4519347
5  Protein 2228705
3   Ligand  934970
4    Metal  830419
2      DNA  265432
6      RNA   69701

> pie(piedataOrdered$x/nrow(pp),  
  labels=piedataOrdered$Category)

!33



Pie chart (PL/R)
kalinina=# CREATE VIEW piechart AS SELECT class, CAST(count(ac) AS float)/(SELECT 
count(ac) FROM structman WHERE class <> 'Disorder') AS percentage FROM structman 
WHERE class <> 'Disorder' GROUP BY class ORDER BY percentage DESC;
CREATE VIEW

kalinina=# CREATE or REPLACE function r_pie(_float8) RETURNS void AS '
pdf("~/Work/ddG/testpie.pdf")
pie(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE pie2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_pie
);
CREATE AGGREGATE

kalinina=# SELECT pie2pdf(percentage) FROM piechart;
 pie2pdf 
---------
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Pie chart (PL/R)
kalinina=# CREATE VIEW piechart AS SELECT class, CAST(count(ac) AS float)/(SELECT 
count(ac) FROM structman WHERE class <> 'Disorder') AS percentage FROM structman 
WHERE class <> 'Disorder' GROUP BY class ORDER BY percentage DESC;
CREATE VIEW

kalinina=# CREATE or REPLACE function r_pie(_float8) RETURNS void AS '
pdf("~/Work/ddG/testpie.pdf")
pie(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE pie2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_pie
);
CREATE AGGREGATE

kalinina=# SELECT pie2pdf(percentage) FROM piechart;
 pie2pdf 
---------
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Pie chart (PL/R)
kalinina=# CREATE VIEW piechart AS SELECT class, CAST(count(ac) AS float)/(SELECT 
count(ac) FROM structman WHERE class <> 'Disorder') AS percentage FROM structman 
WHERE class <> 'Disorder' GROUP BY class ORDER BY percentage DESC;
CREATE VIEW

kalinina=# CREATE or REPLACE function r_pie(_float8) RETURNS void AS '
pdf("~/Work/ddG/testpie.pdf")
pie(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE pie2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_pie
);
CREATE AGGREGATE

kalinina=# SELECT pie2pdf(percentage) FROM piechart;
 pie2pdf 
---------
 
(1 row) !34
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No clean solution to pass  
the names of the categories



Now it starts to pay off
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Now it starts to pay off

• pp (all rows except ‘Disorder’) has 15,259,752 rows

• The most expensive command in R: 
aggregate(pp$AC, by=list(Category=pp$Class), FUN=length) 
takes ~6.3 sec to execute

• Selection from piechart in the database takes 1.97 sec

• On the other hand, running median grouped by Class will never 
finish: full table scan

!35



Statistical significance
• R has implementations of a variety of statistical tests, e.g. 

Wilcoxon test:
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Statistical significance
• R has implementations of a variety of statistical tests, e.g. 

Wilcoxon test:

> wilcox.test(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG), 
x[x$ClinicalSignificance==‘Benign',]$FX_ddG))

    Wilcoxon rank sum test with continuity correction

data:  x[x$ClinicalSignificance == "Pathogenic", ]$FX_ddG and 
x[x$ClinicalSignificance == "Benign", ]$FX_ddG
W = 4419800, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
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Statistical significance
• R has implementations of a variety of statistical tests, e.g. 

Wilcoxon test:

> wilcox.test(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG), 
x[x$ClinicalSignificance==‘Benign',]$FX_ddG))

    Wilcoxon rank sum test with continuity correction

data:  x[x$ClinicalSignificance == "Pathogenic", ]$FX_ddG and 
x[x$ClinicalSignificance == "Benign", ]$FX_ddG
W = 4419800, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

> wilcox.test(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG), 
x[x$ClinicalSignificance==‘Benign’,]$FX_ddG))$p.value
[1] 1.033810e-167

!38



Passing two arrays of 
datapoint

kalinina=# CREATE TABLE ddg (pathogenic float, benign float);
CREATE TABLE
kalinina=# INSERT INTO ddg(pathogenic) SELECT fx_ddg FROM clinvar 
WHERE clinicalsignificance = 'Pathogenic';
INSERT 0 20336
kalinina=# INSERT INTO ddg(benign) SELECT fx_ddg FROM clinvar 
WHERE clinicalsignificance = 'Benign';
INSERT 0 64090
kalinina=# CREATE TABLE ddg_all (ddg float);
CREATE TABLE
kalinina=# INSERT INTO ddg_all(ddg) SELECT pathogenic FROM ddg;
INSERT 0 84426
kalinina=# INSERT INTO ddg_all(ddg) SELECT benign FROM ddg;
INSERT 0 84426

!39



kalinina=# CREATE OR REPLACE FUNCTION r_wilcox(_float8) RETURNS float AS
'                       
x<-arg1[1:length(arg1)/2]
y<-arg1[length(arg1)/2+1:length(arg1)]
wilcox.test(x,y)$p.value
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE wilcox (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_wilcox
);
CREATE AGGREGATE

kalinina=# SELECT wilcox(ddg) FROM ddg_all;
        wilcox         
-----------------------
 1.03380966840586e-167
(1 row)

!40

…and calculating 
statistical significance



…draw plots with two 
series

!41

kalinina=# CREATE OR REPLACE FUNCTION r_plottwo(_float8) RETURNS float AS
'                       
pdf(“testtwo.pdf”)
x<-arg1[1:length(arg1)/2]
y<-arg1[length(arg1)/2+1:length(arg1)]
boxplot(x,y)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE plottwo (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_plottwo
);
CREATE AGGREGATE

kalinina=# SELECT plottwo(ddg) FROM ddg_all;
        plottwo         
-----------------------
 
(1 row)



…draw plots with two 
series

!41

kalinina=# CREATE OR REPLACE FUNCTION r_plottwo(_float8) RETURNS float AS
'                       
pdf(“testtwo.pdf”)
x<-arg1[1:length(arg1)/2]
y<-arg1[length(arg1)/2+1:length(arg1)]
boxplot(x,y)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE plottwo (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_plottwo
);
CREATE AGGREGATE

kalinina=# SELECT plottwo(ddg) FROM ddg_all;
        plottwo         
-----------------------
 
(1 row)
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Joins (R)
• Theoretically, you can join in R
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Joins (R)
• Theoretically, you can join in R


• Let’s do an inner join: 


x: chr Gene   ClinicalSignificance uniprot_ac uniprot_pos aa1 aa2 FX_ddG

p: AC Mut  Species Tags  Surface/Core  Class  
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Joins (R)
• Theoretically, you can join in R


• Let’s do an inner join: 


x: chr Gene   ClinicalSignificance uniprot_ac uniprot_pos aa1 aa2 FX_ddG

p: AC Mut  Species Tags  Surface/Core  Class  

> library (dplyr)
> joined_data <- t %>% inner_join(p, by = c(c(x$uniprot_ac == p$AC)), 
c(x$uniprot_pos == p$Mut)))
Error in Ops.factor(x$uniprot_ac, p$AC) : level sets of factors are 
different

• You have to have the same set of identifiers in both tables!
!44



Joins (PL/R)
kalinina=# SELECT DISTINCT structman.ac AS ac, 
clinicalsignificance, fx_ddg INTO core FROM clinvar INNER JOIN 
structman ON structman.ac = clinvar.uniprot_ac AND structman.mut 
= clinvar.aa1||clinvar.uniprot_pos WHERE structman.class = 
'Core';
SELECT 6637

kalinina=# SELECT DISTINCT structman.ac AS ac, 
clinicalsignificance, fx_ddg INTO notcore FROM clinvar INNER JOIN 
structman ON structman.ac = clinvar.uniprot_ac AND structman.mut 
= clinvar.aa1||clinvar.uniprot_pos WHERE structman.class <> 
'Core';
SELECT 13430

!45



Joins (PL/R)
kalinina=# SELECT clinicalsignificance, median(fx_ddg) FROM clinvar GROUP BY 
clinicalsignificance;
 clinicalsignificance |  median   
----------------------+-----------
 Pathogenic           |    1.7756
 Benign               | 0.6220875
(2 rows)

kalinina=# SELECT clinicalsignificance, median(fx_ddg) FROM core GROUP BY 
clinicalsignificance;
 clinicalsignificance | median  
----------------------+---------
 Pathogenic           |  3.4113
 Benign               | 1.55485
(2 rows)

kalinina=# SELECT clinicalsignificance, median(fx_ddg) FROM notcore GROUP BY 
clinicalsignificance;
 clinicalsignificance |  median  
----------------------+----------
 Pathogenic           | 1.003565
 Benign               | 0.424089
(2 rows)

!46



Summary
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in the R environment
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Summary
• Data analysis can be done with PL/R (almost) as easily as 

in the R environment

• Syntax is more cumbersome

• Passing two arrays of datapoints is a problem

• However, one can benefit from data handling in the 
database 

• Feedback: https://2019.fosdempgday.org/f
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