
If the data does not come to R,
R must go to the data

Olga Kalinina

Helmholtz Institute for Pharmaceutical Research Saarland,
Saarland University

FOSDEM PGDay 2019

Who am I?

!2

Who am I?

• Bioinformatics = computational biology

!2

Who am I?

• Bioinformatics = computational biology

• Analysis of data to gain new biological insights

!2

Who am I?

• Bioinformatics = computational biology

• Analysis of data to gain new biological insights

• Molecular biology

!2

Who am I?

• Bioinformatics = computational biology

• Analysis of data to gain new biological insights

• Molecular biology

• Head of research group for drug bioinformatics at
Helmholtz Institute for Pharmaceutical Research Saarland

!2

Who am I?

• Bioinformatics = computational biology

• Analysis of data to gain new biological insights

• Molecular biology

• Head of research group for drug bioinformatics at
Helmholtz Institute for Pharmaceutical Research Saarland

• Find new bioactive compounds

!2

Data in (life) sciences

!3

Data in (life) sciences

!3

Data in (life) sciences

!3

Data in (life) sciences

!3

Data in (life) sciences

!3

Data in (life) sciences

!3

Where does the data
come from?

!4

Where does the data
come from?
• Experiment

!4

Where does the data
come from?
• Experiment

• Genome sequencing

!4

Where does the data
come from?
• Experiment

• Genome sequencing

!4

Where does the data
come from?
• Experiment

• Genome sequencing

• => ~4×1012 bp

!4

Where does the data
come from?
• Experiment

• Genome sequencing

• => ~4×1012 bp

• Other types of experiment

!4

Where does the data
come from?
• Experiment

• Genome sequencing

• => ~4×1012 bp

• Other types of experiment

• Determination of protein 3D 
structure

!4

Where does the data
come from?
• Experiment

• Genome sequencing

• => ~4×1012 bp

• Other types of experiment

• Determination of protein 3D 
structure

• Gene expression

!4

Where does the data
come from?
• Experiment

• Genome sequencing

• => ~4×1012 bp

• Other types of experiment

• Determination of protein 3D 
structure

• Gene expression

• Computational predictions
!4

How BIG is the data?

!5

How BIG is the data?

• All DNA sequences: ~4×1012 bp = ~9 GB + metadata

!5

How BIG is the data?

• All DNA sequences: ~4×1012 bp = ~9 GB + metadata

• In this talk:

!5

How BIG is the data?

• All DNA sequences: ~4×1012 bp = ~9 GB + metadata

• In this talk:

• Clinically relevant mutations: 13 MB = 84,426 rows

!5

How BIG is the data?

• All DNA sequences: ~4×1012 bp = ~9 GB + metadata

• In this talk:

• Clinically relevant mutations: 13 MB = 84,426 rows

• All human proteins + annotations: 1.9 GB = 23,095,049 rows

!5

How BIG is the data?

• All DNA sequences: ~4×1012 bp = ~9 GB + metadata

• In this talk:

• Clinically relevant mutations: 13 MB = 84,426 rows

• All human proteins + annotations: 1.9 GB = 23,095,049 rows

• (Cross-references from human proteins to other data sources:
147 MB = 6,026,631 rows)

!5

Typical data analysis
pipeline

!6

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Store in a DB

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Store in a DB

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Store in a DB

Select relevant data

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Store in a DB

Select relevant data

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Store in a DB

Select relevant data

Write to disc (text files, MBs to GBs)

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Store in a DB

Select relevant data

Write to disc (text files, MBs to GBs)

Typical data analysis
pipeline

!6

Experiment (up to TBs of data)

Initial data processing, cross-referencing

Store in a DB

Select relevant data

Write to disc (text files, MBs to GBs)

Analyze with dedicated statistical software (Python, SAS, R), 
typically in RAM

R programming
language

!7

R programming
language
• Free software environment for statistical computing and

graphics

!7

https://www.r-project.org/
https://cran.r-project.org/

R programming
language
• Free software environment for statistical computing and

graphics

• Introduced in 1993

!7

https://www.r-project.org/
https://cran.r-project.org/

R programming
language
• Free software environment for statistical computing and

graphics

• Introduced in 1993

• Multi-paradigm, including array: many generalized
functions for multi-dimensional data (vectors, matrices, …)

!7

https://www.r-project.org/
https://cran.r-project.org/

R programming
language
• Free software environment for statistical computing and

graphics

• Introduced in 1993

• Multi-paradigm, including array: many generalized
functions for multi-dimensional data (vectors, matrices, …)

• R project: https://www.r-project.org/

!7

https://www.r-project.org/
https://cran.r-project.org/

R programming
language
• Free software environment for statistical computing and

graphics

• Introduced in 1993

• Multi-paradigm, including array: many generalized
functions for multi-dimensional data (vectors, matrices, …)

• R project: https://www.r-project.org/

• CRAN — 13,626 packages for various types of analysis:
https://cran.r-project.org/

!7

https://www.r-project.org/
https://cran.r-project.org/

R

• R is still widely used,
especially in academia

!8

R

• R is still widely used,
especially in academia

Source: https://www.burtchworks.com/2017/06/19/2017-sas-r-
python-flash-survey-results/!8

R

• R is still widely used,
especially in academia

Source: https://www.burtchworks.com/2017/06/19/2017-sas-r-
python-flash-survey-results/!8

R

• R is still widely used,
especially in academia

Source: https://www.burtchworks.com/2017/06/19/2017-sas-r-
python-flash-survey-results/!8

R

• R is still widely used,
especially in academia

• R is very well suited to do
statistical / machine learning

Source: https://www.burtchworks.com/2017/06/19/2017-sas-r-
python-flash-survey-results/!8

R

• R is still widely used,
especially in academia

• R is very well suited to do
statistical / machine learning

• Due to details of
implementation, calculations
in R are very efficient

Source: https://www.burtchworks.com/2017/06/19/2017-sas-r-
python-flash-survey-results/!8

PL/R

!9

PL/R

• Procedural language that allows to write PostgreSQL
functions and aggregate functions in R

!9

PL/R

• Procedural language that allows to write PostgreSQL
functions and aggregate functions in R

• Developed by Joe Conway since 2003

!9

PL/R

• Procedural language that allows to write PostgreSQL
functions and aggregate functions in R

• Developed by Joe Conway since 2003

• Implements full R functionality

!9

This talk

• No technical details of implementation or management

• User perspective

!10

Is it possible to do full
cycle of data analysis

using only PL/R?

!11

Biology for dummies

!12

Biology for dummies

!12

Biology for dummies

!12

Biology for dummies

!12

Biology for dummies

!12

Biology for dummies

!12

Biological molecules:  
DNA, RNA, proteins

Proteins

!13

Proteins
• Biological machines,

responsible for (almost) all
processes within the cell

!13

Proteins
• Biological machines,

responsible for (almost) all
processes within the cell

• Encoded in genome as a
sequence of characters

!13

Proteins
• Biological machines,

responsible for (almost) all
processes within the cell

• Encoded in genome as a
sequence of characters

• => synthesized as a chain of
similar, yet not identical
(chemically) units

!13

Proteins
• Biological machines,

responsible for (almost) all
processes within the cell

• Encoded in genome as a
sequence of characters

• => synthesized as a chain of
similar, yet not identical
(chemically) units

• Folded into 3D structures that
makes them functional

!13

Proteins
• Biological machines,

responsible for (almost) all
processes within the cell

• Encoded in genome as a
sequence of characters

• => synthesized as a chain of
similar, yet not identical
(chemically) units

• Folded into 3D structures that
makes them functional

!13

Mutations

!14

Mutations
• Happen in DNA

!14

Mutations
• Happen in DNA

• Sources:

• Spontaneous mistakes of DNA polymerase

• Endogenous DNA damage

• Exogenous DNA damage

!14

Mutations
• Happen in DNA

• Sources:

• Spontaneous mistakes of DNA polymerase

• Endogenous DNA damage

• Exogenous DNA damage

• Repair mechanisms => 1 mutation in 1010 nucleotides
per cell division

!14

Mutations
• Happen in DNA

• Sources:

• Spontaneous mistakes of DNA polymerase

• Endogenous DNA damage

• Exogenous DNA damage

• Repair mechanisms => 1 mutation in 1010 nucleotides
per cell division

• Cf. human genome size: 3 × 109 bp

!14

The Central Dogma: flow of
information in the living cells

https://commons.wikimedia.org/wiki/File:Central_dogma_of_molecular_biology.svg

The Central Dogma: flow of
information in the living cells

https://commons.wikimedia.org/wiki/File:Central_dogma_of_molecular_biology.svg

The Central Dogma: flow of
information in the living cells

https://commons.wikimedia.org/wiki/File:Central_dogma_of_molecular_biology.svg

The Central Dogma: flow of
information in the living cells

https://commons.wikimedia.org/wiki/File:Central_dogma_of_molecular_biology.svg

The Central Dogma: flow of
information in the living cells

Protein thermodynamic
stability

Protein thermodynamic
stability
• Simple case: protein can

unfold and refold rapidly,
reversibly, via a two-state
mechanism

Protein thermodynamic
stability
• Simple case: protein can

unfold and refold rapidly,
reversibly, via a two-state
mechanism

• ΔG = Gunfolded − Gfolded

Protein thermodynamic
stability
• Simple case: protein can

unfold and refold rapidly,
reversibly, via a two-state
mechanism

• ΔG = Gunfolded − Gfolded

• Upon mutations, ΔG can
change:  
ΔΔG = ΔGmut − ΔGWT

https://commons.wikimedia.org/w/index.php?curid=28353539

Protein thermodynamic
stability
• Simple case: protein can

unfold and refold rapidly,
reversibly, via a two-state
mechanism

• ΔG = Gunfolded − Gfolded

• Upon mutations, ΔG can
change:  
ΔΔG = ΔGmut − ΔGWT

Some data (real-life)

• ΔΔG estimates upon mutations

#chr Gene ClinicalSignificance uniprot_ac uniprot_pos aa1 aa2 FX_ddG
chr1 ISG15 Benign P05161 83 S N -0.517133
chr2 DNMT3A Pathogenic Q9Y6K1 583 C Y 33.0787
chr1 AGRN Benign O00468-6 15 P R ?

…

• 84,426 rows (13 MB)

!17

Reading the data (R)

> x<-read.table("clinvar.main.pph.ddg.uniprot.tsv",
sep=‘\t’, header=T)  
> x[x == “?”] <- NA  
> nrow(x)
84426

• => data frame

!18

Reading the data
(Postgres)

kalinina=# CREATE TABLE clinvar (chr text, to1 bigint, ref text,
alt text, GeneSymbol text, ClinicalSignificance text,
ReviewStatus text, PhenotypeList text, uniprot_ac text,
uniprot_pos int, aa1 char(1), aa2 char(1), prediction text,
PDB_id text, PDB_pos text, PDB_ch char(1), ident float, FX_ddG
float, IM_ddG float, M_ddG float, M_conf float);
CREATE TABLE

kalinina=# COPY clinvar FROM 'clinvar.main.pph.ddg.uniprot.tsv'
WITH (NULL '?', DELIMITER E'\t');
COPY 84426

!19

Calculate median (R)
>median(x$FX_ddG)  
[1] NA

!20

Calculate median (R)
>median(x$FX_ddG)  
[1] NA

>median(x$FX_ddG, na.rm=TRUE)  
[1] 0.974858

!21

Calculate median (R)
>median(x$FX_ddG)  
[1] NA

>median(x$FX_ddG, na.rm=TRUE)  
[1] 0.974858

>(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG)  
[1] 1.7756

!22

Calculate median (R)
>median(x$FX_ddG)  
[1] NA

>median(x$FX_ddG, na.rm=TRUE)  
[1] 0.974858

>(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG)  
[1] 1.7756

> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN =
median)  
 ClinicalSignificance FX_ddG  
1 Benign 0.62209  
2 Pathogenic 1.77560

!23

Calculate median (PL/R)
kalinina=# CREATE or REPLACE FUNCTION r_median(_float8) RETURNS
float AS '
median(arg1)
' LANGUAGE 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE median (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_median
);
CREATE AGGREGATE

kalinina=# SELECT clinicalsignificance, median(fx_ddg) FROM clinvar
GROUP BY clinicalsignificance ORDER BY clinicalsignificance;

clinicalsignificance | median
---------------------+----------
Benign | 0.6220875
Pathogenic | 1.7756
(2 rows)

!24

Summary statistics (R)

!25

> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = summary)
 ClinicalSignificance FX_ddG.Min. FX_ddG.1st Qu. FX_ddG.Median FX_ddG.Mean FX_ddG.3rd Qu. FX_ddG.Max.
1 Benign -5.77969 -0.04082 0.62209 1.37172 1.91954 62.08970
2 Pathogenic -18.09830 0.30438 1.77560 3.21887 4.21793 52.26050

Summary statistics (R)

!26

> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = summary)
 ClinicalSignificance FX_ddG.Min. FX_ddG.1st Qu. FX_ddG.Median FX_ddG.Mean FX_ddG.3rd Qu. FX_ddG.Max.
1 Benign -5.77969 -0.04082 0.62209 1.37172 1.91954 62.08970
2 Pathogenic -18.09830 0.30438 1.77560 3.21887 4.21793 52.26050

> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = summary)
 ClinicalSignificance FX_ddG.Min. FX_ddG.1st Qu. FX_ddG.Median
1 Benign -5.77969 -0.04082 0.62209
2 Pathogenic -18.09830 0.30438 1.77560

FX_ddG.Mean FX_ddG.3rd Qu. FX_ddG.Max.
 1.37172 1.91954 62.08970
 3.21887 4.21793 52.26050

Summary statistics (R)

!27

> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = summary)
 ClinicalSignificance FX_ddG.Min. FX_ddG.1st Qu. FX_ddG.Median FX_ddG.Mean FX_ddG.3rd Qu. FX_ddG.Max.
1 Benign -5.77969 -0.04082 0.62209 1.37172 1.91954 62.08970
2 Pathogenic -18.09830 0.30438 1.77560 3.21887 4.21793 52.26050

> aggregate(FX_ddG ~ ClinicalSignificance, data = x, FUN = summary)
 ClinicalSignificance FX_ddG.Min. FX_ddG.1st Qu. FX_ddG.Median
1 Benign -5.77969 -0.04082 0.62209
2 Pathogenic -18.09830 0.30438 1.77560

FX_ddG.Mean FX_ddG.3rd Qu. FX_ddG.Max.
 1.37172 1.91954 62.08970
 3.21887 4.21793 52.26050

You need additional code if you need to preserve a specific order of
categories

Summary statistics
(PL/R)

kalinina=# CREATE or REPLACE FUNCTION r_summary(_float8) RETURNS _float8 AS '
summary(arg1)
' LANGUAGE 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE summary (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_median
);
CREATE AGGREGATE

kalinina=# SELECT clinicalsignificance, SELECT summary(fx_ddg) FROM clinvar GROUP BY
clinicalsignificance ORDER BY clinicalsignificance;

clinicalsignificance | summary
---------------------+--
Benign | {-5.77969,-0.040819875,0.6220875,1.37171750416516,1.9195375,62.0897}
Pathogenic | {-18.0983,0.3043845,1.7756,3.21886833468419,4.217925,52.2605}
(2 rows)

!28

Boxplot (R)
>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)

!29

>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)

Boxplot (R)

!30

>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)

• Syntax for subsetting: 
x[x$<someFactor> == ‘<someValue>’,]

>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)

Boxplot (R)

!30

>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)

• Syntax for subsetting: 
x[x$<someFactor> == ‘<someValue>’,]

• Output directly to active graphic  
device

>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)

Boxplot (R)

!30

>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)

• Syntax for subsetting: 
x[x$<someFactor> == ‘<someValue>’,]

• Output directly to active graphic  
device

>boxplot(x[x$ClinicalSignificance == ‘Pathogenic’,]$FX_ddG)

Boxplot (R)

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●
●

●

●

●
●

●
●
●

●●
●
●
●●

●

●●●

●

●

●

●

●

●

●

●
●
●●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●●
●
●
●

●

●

●

●●
●●

●●

●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●
●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−2
0

−1
0

0
10

20
30

40
50

!30

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●
●

●

●

●
●

●
●
●

●●
●
●
●●

●

●●●

●

●

●

●

●

●

●

●
●
●●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●●
●
●
●

●

●

●

●●
●●

●●

●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●
●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−2
0

−1
0

0
10

20
30

40
50

Boxplot (PL/R)
CREATE or REPLACE function
r_boxplot2(_float8) RETURNS void AS '
pdf(“~/Work/ddG/test.pdf”)
boxplot(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE boxplot2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_boxplot2
);
CREATE AGGREGATE

kalinina=# SELECT boxplot2pdf(fx_ddg)
FROM clinvar WHERE clinicalsignificance =
'Pathogenic';
 boxplot2pdf

(1 row) !31

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●
●

●

●

●
●

●
●
●

●●
●
●
●●

●

●●●

●

●

●

●

●

●

●

●
●
●●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●●
●
●
●

●

●

●

●●
●●

●●

●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●
●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−2
0

−1
0

0
10

20
30

40
50

Boxplot (PL/R)
CREATE or REPLACE function
r_boxplot2(_float8) RETURNS void AS '
pdf(“~/Work/ddG/test.pdf”)
boxplot(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE boxplot2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_boxplot2
);
CREATE AGGREGATE

kalinina=# SELECT boxplot2pdf(fx_ddg)
FROM clinvar WHERE clinicalsignificance =
'Pathogenic';
 boxplot2pdf

(1 row) !31

Only output to file

More data (real-life)

• Structural annotation of the human proteome

#AC Mut Species Tags Surface/Core Class
 P30613 R498 HUMAN None Surface Ligand
 P30613 G411 HUMAN None Core Core
 P30613 R559 HUMAN None None Disorder

• Every protein position is classified as Surface, Core,
Ligand, Metal, Protein, DNA, RNA, or Disorder  
(8 categories)

• 23,095,049 rows (1.9 GB)

!32

Pie chart (R)
> p <- read.table(“proteome.classification.tsv”, sep=“\t”)
> p[p == “None”] <- NA
> pp <- p[p$Class <> ‘Disorder’,]
> piedata <- aggregate(pp$AC, by=list(Category=pp$Class), FUN=length)
> piedataOrdered <- piedata[order(-piedata$x),]
> piedataOrdered
 Category x
7 Surface 6411178
1 Core 4519347
5 Protein 2228705
3 Ligand 934970
4 Metal 830419
2 DNA 265432
6 RNA 69701

> pie(piedataOrdered$x/nrow(pp),  
 labels=piedataOrdered$Category)

!33

Pie chart (R)
> p <- read.table(“proteome.classification.tsv”, sep=“\t”)
> p[p == “None”] <- NA
> pp <- p[p$Class <> ‘Disorder’,]
> piedata <- aggregate(pp$AC, by=list(Category=pp$Class), FUN=length)
> piedataOrdered <- piedata[order(-piedata$x),]
> piedataOrdered
 Category x
7 Surface 6411178
1 Core 4519347
5 Protein 2228705
3 Ligand 934970
4 Metal 830419
2 DNA 265432
6 RNA 69701

> pie(piedataOrdered$x/nrow(pp),  
 labels=piedataOrdered$Category)

!33

Pie chart (PL/R)
kalinina=# CREATE VIEW piechart AS SELECT class, CAST(count(ac) AS float)/(SELECT
count(ac) FROM structman WHERE class <> 'Disorder') AS percentage FROM structman
WHERE class <> 'Disorder' GROUP BY class ORDER BY percentage DESC;
CREATE VIEW

kalinina=# CREATE or REPLACE function r_pie(_float8) RETURNS void AS '
pdf("~/Work/ddG/testpie.pdf")
pie(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE pie2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_pie
);
CREATE AGGREGATE

kalinina=# SELECT pie2pdf(percentage) FROM piechart;
 pie2pdf

(1 row) !34

Pie chart (PL/R)
kalinina=# CREATE VIEW piechart AS SELECT class, CAST(count(ac) AS float)/(SELECT
count(ac) FROM structman WHERE class <> 'Disorder') AS percentage FROM structman
WHERE class <> 'Disorder' GROUP BY class ORDER BY percentage DESC;
CREATE VIEW

kalinina=# CREATE or REPLACE function r_pie(_float8) RETURNS void AS '
pdf("~/Work/ddG/testpie.pdf")
pie(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE pie2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_pie
);
CREATE AGGREGATE

kalinina=# SELECT pie2pdf(percentage) FROM piechart;
 pie2pdf

(1 row) !34

1

2

3

4

5

6
7

Pie chart (PL/R)
kalinina=# CREATE VIEW piechart AS SELECT class, CAST(count(ac) AS float)/(SELECT
count(ac) FROM structman WHERE class <> 'Disorder') AS percentage FROM structman
WHERE class <> 'Disorder' GROUP BY class ORDER BY percentage DESC;
CREATE VIEW

kalinina=# CREATE or REPLACE function r_pie(_float8) RETURNS void AS '
pdf("~/Work/ddG/testpie.pdf")
pie(arg1)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE pie2pdf (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_pie
);
CREATE AGGREGATE

kalinina=# SELECT pie2pdf(percentage) FROM piechart;
 pie2pdf

(1 row) !34

1

2

3

4

5

6
7

No clean solution to pass  
the names of the categories

Now it starts to pay off

!35

Now it starts to pay off

• pp (all rows except ‘Disorder’) has 15,259,752 rows

!35

Now it starts to pay off

• pp (all rows except ‘Disorder’) has 15,259,752 rows

• The most expensive command in R: 
aggregate(pp$AC, by=list(Category=pp$Class), FUN=length) 
takes ~6.3 sec to execute

!35

Now it starts to pay off

• pp (all rows except ‘Disorder’) has 15,259,752 rows

• The most expensive command in R: 
aggregate(pp$AC, by=list(Category=pp$Class), FUN=length) 
takes ~6.3 sec to execute

• Selection from piechart in the database takes 1.97 sec

!35

Now it starts to pay off

• pp (all rows except ‘Disorder’) has 15,259,752 rows

• The most expensive command in R: 
aggregate(pp$AC, by=list(Category=pp$Class), FUN=length) 
takes ~6.3 sec to execute

• Selection from piechart in the database takes 1.97 sec

• On the other hand, running median grouped by Class will never
finish: full table scan

!35

Statistical significance
• R has implementations of a variety of statistical tests, e.g.

Wilcoxon test:

!36

Statistical significance
• R has implementations of a variety of statistical tests, e.g.

Wilcoxon test:

> wilcox.test(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG),
x[x$ClinicalSignificance==‘Benign',]$FX_ddG))

 Wilcoxon rank sum test with continuity correction

data: x[x$ClinicalSignificance == "Pathogenic",]$FX_ddG and
x[x$ClinicalSignificance == "Benign",]$FX_ddG
W = 4419800, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

!37

Statistical significance
• R has implementations of a variety of statistical tests, e.g.

Wilcoxon test:

> wilcox.test(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG),
x[x$ClinicalSignificance==‘Benign',]$FX_ddG))

 Wilcoxon rank sum test with continuity correction

data: x[x$ClinicalSignificance == "Pathogenic",]$FX_ddG and
x[x$ClinicalSignificance == "Benign",]$FX_ddG
W = 4419800, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

> wilcox.test(x[x$ClinicalSignificance==‘Pathogenic',]$FX_ddG),
x[x$ClinicalSignificance==‘Benign’,]$FX_ddG))$p.value
[1] 1.033810e-167

!38

Passing two arrays of
datapoint

kalinina=# CREATE TABLE ddg (pathogenic float, benign float);
CREATE TABLE
kalinina=# INSERT INTO ddg(pathogenic) SELECT fx_ddg FROM clinvar
WHERE clinicalsignificance = 'Pathogenic';
INSERT 0 20336
kalinina=# INSERT INTO ddg(benign) SELECT fx_ddg FROM clinvar
WHERE clinicalsignificance = 'Benign';
INSERT 0 64090
kalinina=# CREATE TABLE ddg_all (ddg float);
CREATE TABLE
kalinina=# INSERT INTO ddg_all(ddg) SELECT pathogenic FROM ddg;
INSERT 0 84426
kalinina=# INSERT INTO ddg_all(ddg) SELECT benign FROM ddg;
INSERT 0 84426

!39

kalinina=# CREATE OR REPLACE FUNCTION r_wilcox(_float8) RETURNS float AS
'
x<-arg1[1:length(arg1)/2]
y<-arg1[length(arg1)/2+1:length(arg1)]
wilcox.test(x,y)$p.value
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE wilcox (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_wilcox
);
CREATE AGGREGATE

kalinina=# SELECT wilcox(ddg) FROM ddg_all;
 wilcox

 1.03380966840586e-167
(1 row)

!40

…and calculating
statistical significance

…draw plots with two
series

!41

kalinina=# CREATE OR REPLACE FUNCTION r_plottwo(_float8) RETURNS float AS
'
pdf(“testtwo.pdf”)
x<-arg1[1:length(arg1)/2]
y<-arg1[length(arg1)/2+1:length(arg1)]
boxplot(x,y)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE plottwo (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_plottwo
);
CREATE AGGREGATE

kalinina=# SELECT plottwo(ddg) FROM ddg_all;
 plottwo

(1 row)

…draw plots with two
series

!41

kalinina=# CREATE OR REPLACE FUNCTION r_plottwo(_float8) RETURNS float AS
'
pdf(“testtwo.pdf”)
x<-arg1[1:length(arg1)/2]
y<-arg1[length(arg1)/2+1:length(arg1)]
boxplot(x,y)
dev.off()
' language 'plr';
CREATE FUNCTION

kalinina=# CREATE AGGREGATE plottwo (
sfunc = plr_array_accum,
basetype = float8,
stype = _float8,
finalfunc = r_plottwo
);
CREATE AGGREGATE

kalinina=# SELECT plottwo(ddg) FROM ddg_all;
 plottwo

(1 row)

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●●●●●

●●

●●●●

●●

●●

●●

●●

●●
●●●●●●
●●●●
●●
●●
●●
●●●●●●●●
●●

●●●●●●
●●

●●●●
●●

●●

●●

●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●
●●

●●

●●

●●

●●●●

●●

●●

●●
●●●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●●●
●●

●●
●●

●●

●●

●●

●●

●●●●

●●●●
●●

●●

●●

●●●●

●●

●●

●●

●●
●●

●●●●●●
●●

●●●●
●●

●●
●●

●●●●

●●●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●
●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●
●●

●●
●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●
●

●●

●●

●●●●

●

●

●

●

●

●

●

●
●●●
●

●
●

●

●
●
●

●●
●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

1 2

0
10

20
30

40
50

60

Joins (R)
• Theoretically, you can join in R

!42

Joins (R)
• Theoretically, you can join in R

• Let’s do an inner join:

x: chr Gene ClinicalSignificance uniprot_ac uniprot_pos aa1 aa2 FX_ddG

p: AC Mut Species Tags Surface/Core Class

!43

Joins (R)
• Theoretically, you can join in R

• Let’s do an inner join:

x: chr Gene ClinicalSignificance uniprot_ac uniprot_pos aa1 aa2 FX_ddG

p: AC Mut Species Tags Surface/Core Class

> library (dplyr)
> joined_data <- t %>% inner_join(p, by = c(c(x$uniprot_ac == p$AC)),
c(x$uniprot_pos == p$Mut)))
Error in Ops.factor(x$uniprot_ac, p$AC) : level sets of factors are
different

• You have to have the same set of identifiers in both tables!
!44

Joins (PL/R)
kalinina=# SELECT DISTINCT structman.ac AS ac,
clinicalsignificance, fx_ddg INTO core FROM clinvar INNER JOIN
structman ON structman.ac = clinvar.uniprot_ac AND structman.mut
= clinvar.aa1||clinvar.uniprot_pos WHERE structman.class =
'Core';
SELECT 6637

kalinina=# SELECT DISTINCT structman.ac AS ac,
clinicalsignificance, fx_ddg INTO notcore FROM clinvar INNER JOIN
structman ON structman.ac = clinvar.uniprot_ac AND structman.mut
= clinvar.aa1||clinvar.uniprot_pos WHERE structman.class <>
'Core';
SELECT 13430

!45

Joins (PL/R)
kalinina=# SELECT clinicalsignificance, median(fx_ddg) FROM clinvar GROUP BY
clinicalsignificance;
 clinicalsignificance | median
----------------------+-----------
 Pathogenic | 1.7756
 Benign | 0.6220875
(2 rows)

kalinina=# SELECT clinicalsignificance, median(fx_ddg) FROM core GROUP BY
clinicalsignificance;
 clinicalsignificance | median
----------------------+---------
 Pathogenic | 3.4113
 Benign | 1.55485
(2 rows)

kalinina=# SELECT clinicalsignificance, median(fx_ddg) FROM notcore GROUP BY
clinicalsignificance;
 clinicalsignificance | median
----------------------+----------
 Pathogenic | 1.003565
 Benign | 0.424089
(2 rows)

!46

Summary

!47

Summary
• Data analysis can be done with PL/R (almost) as easily as

in the R environment

!47

https://2019.fosdempgday.org/f

Summary
• Data analysis can be done with PL/R (almost) as easily as

in the R environment

• Syntax is more cumbersome

!47

https://2019.fosdempgday.org/f

Summary
• Data analysis can be done with PL/R (almost) as easily as

in the R environment

• Syntax is more cumbersome

• Passing two arrays of datapoints is a problem

!47

https://2019.fosdempgday.org/f

Summary
• Data analysis can be done with PL/R (almost) as easily as

in the R environment

• Syntax is more cumbersome

• Passing two arrays of datapoints is a problem

• However, one can benefit from data handling in the
database

!47

https://2019.fosdempgday.org/f

Summary
• Data analysis can be done with PL/R (almost) as easily as

in the R environment

• Syntax is more cumbersome

• Passing two arrays of datapoints is a problem

• However, one can benefit from data handling in the
database

• Feedback: https://2019.fosdempgday.org/f

!47

https://2019.fosdempgday.org/f

