
Deploying PostgreSQL
on Kubernetes

Jimmy Angelakos                                                            FOSDEM
Platform Architect                                                                                                 03/02/2019 
SolarWinds MSP                                                                                                         



Motivation
● Service Oriented Architecture (SOA), including 

Micro– , exemplified perfectly by Kubernetes
● Kubernetes is here to stay
● Fewer phonecalls at 4 am?
● Play around at home for free
● Or get commercial support
● Cloud Compute, Storage → Commodity
● (Industrial-strength) Postgres is hard
● You want Postgres → Commodity to your users
● By no means an exhaustive list of solutions or 

in-depth analysis but an attempt to demystify



What this is not
I. A demo of me fiddling with terminals and window tiling 

techniques on the screen

II. Me typing in Kubernetes commands so you can see how 
they are typed in

III. And… press ENTER. Ok, there, it worked. See?

IV. No wait. It didn’t. Let me fiddle some more.



What this is
Contents:

I. Kubernetes basics

II. Small scale

III. Helm Charts

IV. Crunchy Data Operator

V. Observations



I.
Kubernetes (k8s) basics



K8s basics – 1: K8s & Containers
● Container: Lightweight, standalone, executable package

– Containerized software will run on any environment with no differences
– Resource efficient vs. VMs
– Platform independent vs. “It works on my machine ¯\_(ツ )_/¯ ” 

● K8s is a container orchestrator
– Written in Go (Golang)
– Cloud Native Computing Foundation (CNCF)
– Scaling, load balancing, safely rolling out updates
– Abstracting infrastructure via API: Can use any cloud provider (or none)
– Resources: k8s API objects
– “Pets vs Cattle” debate



K8s basics – 2: Terms
● Cluster

– Master node runs API server (our interface to the Cluster)
– Worker nodes run Kubelet and Pods
– Namespaces: Virtual clusters (resource quotas)

● Kubelet
– Talks to Master node, monitors Pods

● Pod
– A container or group of containers sharing the same execution environment
– Container coupling: sharing a volume or IPC

● Volume
– Storage abstraction, many types



K8s basics – 3: Moar terms
● Minikube

– Single-node k8s cluster in a VM – install VirtualBox and you’re good to go.
● Prometheus

– Monitoring solution for k8s (also by CNCF, so described as “best fit”…)
● Custom Resource Definitions

– Write them to extend k8s API at will
● Operator pattern

– Custom domain-specific controllers that work with CRDs
– Configure & manage stateful applications for you
– No need for out-of-band automation



K8s basics – 4: YAML files
● Definitions

– YAML!
– kind of resource e.g. Pod
– metadata e.g. name, labels

– spec i.e. the desired state for the 
resource

● Kubectl
– CLI tool for interacting with Cluster

kubectl create -f my-pod.yaml

kubectl get pods



K8s basics – 5: Services
● Service

– Exposes Pods externally via URL
– Entry point for a set of Pods performing the same function
– Targets Pods using a selector for the labels applied to Pods
– Can have Type: ClusterIP, NodePort, LoadBalancer, ExternalName
– Needs a way to route traffic from outside the Cluster

● NodePort will assign the same Port from each Node
● LoadBalancer will provision an external LB from cloud provider



K8s basics – 6: Deployments
● Deployment

– Automates upgrades of applications with zero downtime
– Enables fast rollbacks to previous state
kubectl rollout undo deployment my-app --to-revision=5 

– Defines number of replicated Pods in spec
● Manages ReplicaSets for you

– Can have Strategy: RollingUpdate, Recreate



K8s basics – 7: State
● Stateless Applications

– Usually as a Deployment of Pod Replicas accessed via a Service
● Stateful Applications

– StatefulSets
● Stable storage
● Stable network identifiers
● Ordered deployment & scaling
● Ordered RollingUpdates



K8s basics – 8: StatefulSets
● spec

– Defines replicas in unique Pods (with stable network identity & storage)

– Defines storage in PersistentVolumes
● Headless Service

– No load balancing, no cluster IP: self-registration or discovery possible

– Governs DNS subdomain of Pods: e.g.  mypod-1.myservice.mynamespace
● PersistentVolumes: Provisioned storage as a resource 

● PersistentVolumeClaim: A request for storage, consumes PV resources

● Deletion

– Does not remove PersistentVolumes (for safety)

– Does not guarantee Pod termination (scale to zero before)



II.
Small scale



Small scale – 1: The image
● You need a PostgreSQL container image

– Roll your own

– Use an existing image
● PostgreSQL Docker Community “Official image”

– https://github.com/docker-library/postgres

docker pull postgres

● Bitnami PostgreSQL Docker image

– https://github.com/bitnami/bitnami-docker-postgresql
● Crunchy Data containers

– https://github.com/CrunchyData/crunchy-containers

https://github.com/docker-library/postgres
https://github.com/bitnami/bitnami-docker-postgresql
https://github.com/CrunchyData/crunchy-containers


Small scale – 2: Deployment
● Create a ConfigMap for the 

configuration values → 
● Create a PersistentVolume and a 

PersistentVolumeClaim
● Create a Deployment for your 

Container image & PV
● Create a Service to expose the above. 

Simple: NodePort
● Connect to your database via exposed 

port or kubectl port forwarding

apiVersion: v1
kind: ConfigMap
metadata:
  name: postgres-config
  labels:
    app: postgres
data:
  POSTGRES_DB: mydatabase
  POSTGRES_USER: myuser
  POSTGRES_PASSWORD: mypassword



III.
Helm Charts



Helm Charts – 1: Introduction
● Helm

– A “package manager” for k8s. Helm is the client.
– Tiller is the server-side component installed in k8s

● Charts
– Directories of (you guessed it) YAML files
– Describe a set of related k8s resources
– values.yaml lets you customise options and configuration

● PostgreSQL use case
– One-stop installation for a set of replicated databases
– It makes sense!

https://helm.sh/
https://github.com/helm/charts


Helm Charts – 2: PostgreSQL Chart
● Contributed by Bitnami, upstreamed:

– https://github.com/helm/charts/tree/master/stable/postgresql 
● Default Docker image repo is Bitnami
● Installation is as simple as:

helm install --name my-release -f values.yaml stable/postgresql

– A Release in this context is an installation, a deployment
● Output will include some magic commands for getting the DB password and 

connecting to the running instance
● postgresql.conf or pg_hba.conf can be provided in files/ folder and will 

be mounted as a ConfigMap (special Volume type for abstracting configuration)

https://github.com/helm/charts/tree/master/stable/postgresql


NAME:   my-release
LAST DEPLOYED: Fri Jan 25 15:20:58 2019
NAMESPACE: my-namespace
STATUS: DEPLOYED

RESOURCES:
==> v1/Secret
NAME                  TYPE    DATA  AGE
my-release-postgresql  Opaque  1     3s

==> v1/ConfigMap
NAME                               DATA  AGE
my-release-postgresql-init-scripts  1     3s

==> v1/Service
NAME                           TYPE       CLUSTER-IP    EXTERNAL-IP  PORT(S)   AGE
my-release-postgresql-headless  ClusterIP  None          <none>       5432/TCP  3s
my-release-postgresql           ClusterIP  10.101.211.6  <none>       5432/TCP  3s

==> v1beta2/StatefulSet
NAME                  DESIRED  CURRENT  AGE
my-release-postgresql  1        1        3s

==> v1/Pod(related)
NAME                    READY  STATUS    RESTARTS  AGE
my-release-postgresql-0  0/1    Init:0/1  0         3s



NOTES:
** Please be patient while the chart is being deployed **

PostgreSQL can be accessed via port 5432 on the following DNS name from within your 
cluster:

    my-release-postgresql.my-namespace.svc.cluster.local

To get the password for "postgres" run:

    export POSTGRESQL_PASSWORD=$(kubectl get secret --namespace my-namespace my-release-
postgresql -o jsonpath="{.data.postgresql-password}" | base64 --decode)

To connect to your database run the following command:

    kubectl run my-release-postgresql-client --rm --tty -i --restart='Never' --namespace 
my-namespace --image bitnami/postgresql --env="PGPASSWORD=$POSTGRESQL_PASSWORD" --command 
-- psql --host my-release-postgresql -U postgres

To connect to your database from outside the cluster execute the following commands:

    kubectl port-forward --namespace my-namespace svc/my-release-postgresql 5432:5432 &
    psql --host 127.0.0.1 -U postgres



Helm Charts – 3: Internals
● Defaults create:

– A StatefulSet with 1 Replica (1 Pod) running Postgres from the Docker image
– A Headless Service and a Service 
– A PersistentVolumeClaim from the configured storage provisioner

● Can be configured to:
– Load custom Postgres initialisation scripts as ConfigMaps from files/
– Start a metrics exporter to Prometheus:

● https://github.com/wrouesnel/postgres_exporter 
● Export e.g. pg_stat_activity, pg_stat_replication or custom metrics 

queries

https://github.com/wrouesnel/postgres_exporter


Helm Charts – 4: Patroni Chart 
● For HA you can use the Helm Incubator Patroni Chart:

– https://github.com/helm/charts/tree/master/incubator/patroni
● This, too, uses StatefulSets
● Default installation deploys a 5 node Spilo cluster

– Zalando’s Spilo is Postgres & Patroni bundled image
● Installation

helm repo add incubator https://kubernetes-charts-
incubator.storage.googleapis.com/

helm dependency update

helm install --name my-release incubator/patroni

https://github.com/helm/charts/tree/master/incubator/patroni


IV.
Crunchy Operator



Crunchy Operator – 1
● Crunchy Data PostgreSQL Operator

– https://github.com/CrunchyData/postgres-operator
● Deploy Postgres with streaming replication & scaling
● Add pgpool, pgbouncer, and metrics sidecars
● Administer SQL policies, users, passwords
● Assign labels to resources
● Minor version upgrades
● Perform backups and restores (or schedule them) 

https://www.crunchydata.com/
https://github.com/CrunchyData/postgres-operator


Crunchy Operator – 2
Quickstart:
● git clone the GitHub repo,  git checkout <tag> 
● source examples/envs.sh
● make setupnamespace creates a “demo” namespace
● conf/postgres-operator/pgo.yaml holds the configuration
● make installrbac Creates RBAC resources and keys
● make deployoperator



Crunchy Operator – 3: pgo
● pgo is the CLI to interact with the operator

pgo create cluster my-cluster (--metrics if you want)
pgo show cluster my-cluster
pgo scale my-cluster --replica-count=2

pgo create pgbouncer my-cluster or
pgo create pgpool my-cluster to add 

● Backups
pgo create cluster my-cluster --pgbackrest
pgo backup my-cluster --backup-type=pgbackrest (or pgbasebackup)
pgo restore my-cluster

● Manual failovers
pgo failover my-cluster –query (to get failover targets)
pgo failover my-cluster --target=my-failover-target-1 



V.
Observations



Observations – 1: Deploying by hand

● Good for rapid development
● Offers equivalent isolation as VMs
● Resource saving compared to VMs
● Doesn’t offer many Cloud Native advantages
● Production usage? 

– Hard to maintain at scale unless you have an army of DBAs



Observations – 2: Helm Charts
● Good for one-time deployments
● Very clean and transparent
● Major version upgrades?
● Slave replicas – no failover unless you set it up explicitly
● Flexibility to carry on using your existing solutions
● Can be used by namespace-admin or plain user with 

permissions



Observations – 3: Crunchy Operator

● All-in-one solution, Postgres as an application
● Makes many tasks easy via CLI and automates others
● You need RBAC and cluster-admin permissions for creation of 

CRDs
– Kubernetes does not support namespaced CRDs :(
– https://github.com/kubernetes/kubernetes/issues/65551

● Under heavy development – perhaps not ideal for production?
– But so is Kubernetes :/

https://github.com/kubernetes/kubernetes/issues/65551


Observations – 4
● Hard problem

– (Plain) Postgres cluster with multiple write nodes
– Multi-master is not always the solution
– Can leverage aforementioned solutions with 2ndQuadrant’s 

pglogical for granularity
● https://www.2ndquadrant.com/en/resources/pglogical/
● Doesn’t even need a custom image, can be added as post-install hook

https://www.2ndquadrant.com/en/resources/pglogical/


Alternatives? 
● DBaaS/PaaS like Heroku ($$$)
● Managed cloudy DBs like EnterpriseDB’s (AWS) Postgres
● Evil ;)

– Amazon RDS (/Aurora?) PostgreSQL
– Google Cloud SQL PostgreSQL
– Azure Database for PostgreSQL

● Define as Services, connect to Endpoints



Thank you =)
Twitter: @vyruss

Photo: Forth Bridge, Firth of Forth, Edinburgh


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

