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Why this talk 2

• Linux is a most common OS for databases
• Fast IO is essential for many workloads
• DBAs often run into IO problems
• Most of the information on topic is written by kernel developers (forkernel developers) or is checklist-style
• Last years Linux IO stack (re)development is very fast
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Bird eye view 3

• How a generic database or PostgreSQL interacts with IO
• Linux IO as we used to understand it
• What is new?
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It is easy, while read only 5
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Writes add complexity 6
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Key things about modern database workload 7

• Shared memory segment can be very large
• Keeping in-memory pages synchronized with disk generates huge IO
• WAL should be written fast and safe
• One and every layer of OS IO stack involved
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What generates most of IO in case of PostgreSQL 8

• Keeping pages synchronized: checkpoints and other sync mechanisms
• Autovacuum can generate a lot of IO
• Cache refill
• Worker IO (Sorts and hashing, as well as worst-case fsyncs)
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The main IO problem for databases for a long time was 9

• How to maximize page throughput between memory and disks
• Things involved:

I Disks
I Memory
I CPU
I IO Schedulers
I Filesystems
I Database itself

• IO problems for databases are not always only about disks
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The main IO problem for databases for a long time was 10

• How to maximize page throughput between memory and disks
• Things involved:

I Disks - because latency of this part was very significant
I Memory
I CPU
I IO Schedulers
I Filesystems
I Database itself

• IO problems for databases are not always only about disks
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Throughput and latency 11

• Maximizing IO performance through maximizing throughput is easy up tocertain moment
• Minimizing latency of IO usually is tricky
• With large adoption of proper SSDs, hardware latency droppeddramatically
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Because of high latency of rotating disks 12

• Database development was concentrated around maximization ofthroughput
• So did Linux kernel development
• Many rotating disks era IO optimization techniques are not that good forSSDs
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IO stack (as it used to look like) 13
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Elevators: before 2.6 kernel 15

• Linus Elevator - the only one in times of 2.4
• merging and sorting request queues
• Had lots of problems
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Elevators: between 2.6 and early 3.* 16

• CFQ - universal, default one
• deadline - rotating disks
• noop or none - then disks throughput is so high, that it can not benefitfrom keen scheduling

I PCIe SSDs
I SAN disk arrays
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Elevators: 3.13 and newer 17

• Effectiveness of noop clearly shows ineffectiveness of others, orineffectiveness of smart sorting as an approach
• blk-mq scheduler was merged into 3.13 kernel
• Much better deals with parallelism of modern SSD - basically separate IOqueue for each CPU
• The best option for good SSDs right now
• blk-mq and NVMe driver is actually more than scheduler, but asystem aimed to substitute whole request layer
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Old approach to elevators 18
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New approach to elevators 19
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IO stack (with blk-mq) 20
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Good diagram on Linux IO stack 21

• https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram
• Regular updates
• Some things are difficult to draw, but it is a complex topic
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Non Volatile Memory Express or NVMe 22

• Sets of standards, which helps to use modern SSDs more effectively
• For Linux it is first of all NVMe driver (or subsystem)
• Most common example of NVMe SSDs are PCIe NAND drives
• With NVMe v.5 (currently 3 is ready for production) can work up to32GB/sec
• Are databases NVMe ready?
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Latest development on new block layer 23

• IO polling
• New IO schedulers Kyber and BFQ (Kernel 4.12)
• IO tagging
• Direct IO improvements

dataegret.com



Notes on Direct IO 24

• Currently PostgreSQL supports DirectIO only for WAL, but it is unusableon practice
• Requires a lots of development
• Very OS specific
• Allows to use specific things, like O_ATOMIC
• PostgreSQL is the only database, which is not using Direct IO
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Questions? 25

ik@dataegret.com
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