
Latest evolutionof Linux IO stack,explained for database people

Ilya Kosmodemiansky (ik@dataegret.com)



Why this talk 2

• Linux is a most common OS for databases
• Fast IO is essential for many workloads
• DBAs often run into IO problems
• Most of the information on topic is written by kernel developers (forkernel developers) or is checklist-style
• Last years Linux IO stack (re)development is very fast

dataegret.com



Bird eye view 3

• How a generic database or PostgreSQL interacts with IO
• Linux IO as we used to understand it
• What is new?

dataegret.com



Well, typical database 4
DRAM

Disks

Shared memory

Database

Linux

Page cache

User space

Kernel space

WAL bu�er

WAL Data�le

dataegret.com



It is easy, while read only 5
DRAM

Disks

shared_bu�ers

work_mem

work_mem

work_mem

PostgreSQL

Linux

Page cache

single worker

select foo from 
bar where foo=3

dataegret.com



Writes add complexity 6
DRAM

Disks

shared_bu�ers

PostgreSQL

Linux

Page cache

Page

Dirty page

data�le
WAL

update foo set bar=buzz

WAL buffer

worker

dataegret.com



Key things about modern database workload 7

• Shared memory segment can be very large
• Keeping in-memory pages synchronized with disk generates huge IO
• WAL should be written fast and safe
• One and every layer of OS IO stack involved

dataegret.com



What generates most of IO in case of PostgreSQL 8

• Keeping pages synchronized: checkpoints and other sync mechanisms
• Autovacuum can generate a lot of IO
• Cache refill
• Worker IO (Sorts and hashing, as well as worst-case fsyncs)

dataegret.com



The main IO problem for databases for a long time was 9

• How to maximize page throughput between memory and disks
• Things involved:

I Disks
I Memory
I CPU
I IO Schedulers
I Filesystems
I Database itself

• IO problems for databases are not always only about disks

dataegret.com



The main IO problem for databases for a long time was 10

• How to maximize page throughput between memory and disks
• Things involved:

I Disks - because latency of this part was very significant
I Memory
I CPU
I IO Schedulers
I Filesystems
I Database itself

• IO problems for databases are not always only about disks

dataegret.com



Throughput and latency 11

• Maximizing IO performance through maximizing throughput is easy up tocertain moment
• Minimizing latency of IO usually is tricky
• With large adoption of proper SSDs, hardware latency droppeddramatically

dataegret.com



Because of high latency of rotating disks 12

• Database development was concentrated around maximization ofthroughput
• So did Linux kernel development
• Many rotating disks era IO optimization techniques are not that good forSSDs

dataegret.com



IO stack (as it used to look like) 13
Database memory

Page cacheVFS
EXT4

Block device interface
Disks

Direct IO

BIO Layer

Block IO 

Request Layer Elevator/IO Scheduler

dataegret.com



IO stack (as it used to look like) 14
Database memory

Page cacheVFS
EXT4

Block device interface
Disks

Direct IO

BIO Layer

Block IO 

Request Layer Elevator/IO Scheduler

� � � �� �� � �� � � � �

� � � �� �� � �� � ��� � � �� /� � � �� ��

� � � � � �� �� � � �� �� � �
 � �� �� � � �� � �

dataegret.com



Elevators: before 2.6 kernel 15

• Linus Elevator - the only one in times of 2.4
• merging and sorting request queues
• Had lots of problems

dataegret.com



Elevators: between 2.6 and early 3.* 16

• CFQ - universal, default one
• deadline - rotating disks
• noop or none - then disks throughput is so high, that it can not benefitfrom keen scheduling

I PCIe SSDs
I SAN disk arrays

dataegret.com



Elevators: 3.13 and newer 17

• Effectiveness of noop clearly shows ineffectiveness of others, orineffectiveness of smart sorting as an approach
• blk-mq scheduler was merged into 3.13 kernel
• Much better deals with parallelism of modern SSD - basically separate IOqueue for each CPU
• The best option for good SSDs right now
• blk-mq and NVMe driver is actually more than scheduler, but asystem aimed to substitute whole request layer

dataegret.com



Old approach to elevators 18

Disks

CPU

El
ev

at
or

 Q
ue

ue

Disks

CPU1

El
ev

at
or

 Q
ue

ue

CPU2

El
ev

at
or

 Q
ue

ue

El
ev

at
or

 Q
ue

ue

dataegret.com



New approach to elevators 19

Disks

sw
 q

u
e
u

e
CPU 1

sw
 q

u
e
u

e

CPU 2

sw
q

u
e
u
e

CPU 3

sw
 q

u
e
u

e

CPU 4

hw
 q

ue
ue

hw
 q

ue
ue

dataegret.com



IO stack (with blk-mq) 20
Database memory

Page cacheVFS
EXT4

Disks

Direct IO

BIO Layer

Block IO 

Kyber/BFQ IO schedullers

blk-mq
NVMe driver

dataegret.com



Good diagram on Linux IO stack 21

• https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram
• Regular updates
• Some things are difficult to draw, but it is a complex topic

dataegret.com



Non Volatile Memory Express or NVMe 22

• Sets of standards, which helps to use modern SSDs more effectively
• For Linux it is first of all NVMe driver (or subsystem)
• Most common example of NVMe SSDs are PCIe NAND drives
• With NVMe v.5 (currently 3 is ready for production) can work up to32GB/sec
• Are databases NVMe ready?

dataegret.com



Latest development on new block layer 23

• IO polling
• New IO schedulers Kyber and BFQ (Kernel 4.12)
• IO tagging
• Direct IO improvements

dataegret.com



Notes on Direct IO 24

• Currently PostgreSQL supports DirectIO only for WAL, but it is unusableon practice
• Requires a lots of development
• Very OS specific
• Allows to use specific things, like O_ATOMIC
• PostgreSQL is the only database, which is not using Direct IO

dataegret.com



Questions? 25

ik@dataegret.com

dataegret.com


