
Identifying Slow Queries, and Fixing Them!

Stephen Frost
Crunchy Data

stephen@crunchydata.com

FOSDEM 2020
February 2, 2020

Stephen Frost

Chief Technology Officer @ Crunchy Data

Committer, PostgreSQL

Major Contributor, PostgreSQL

GSSAPI Ecryption in v12

Row-Level Security in 9.5

Column-level privileges in 8.4

Implemented the roles system in 8.1

Contributions to PL/pgSQL, PostGIS

2 / 40

Community!

Follow Planet PostgreSQL! https://planet.postgresql.org

Join PostgreSQL.EU! https://postgresql.eu

Join PostgreSQL.US! https://postgresql.us

3 / 40

https://planet.postgresql.org
https://postgresql.eu
https://postgresql.us

Finding Slow Queries

Logging- Enable with postgresql.conf

Log Analysis- Generate reports (pgBadger)

Viewing Active Queries (pg stat statements)

4 / 40

Logging

postgresql.conf configuration

log min duration statement

log line prefix

log checkpoints

log connections

log disconnections

log lock waits

log temp files

log autovacuum min duration

5 / 40

log min duration statement

log_min_duration_statement = 0

Zero Logs every statement sent

Number is in milliseconds

Queries taking longer than value logged

Includes duration *on the same line*

Do NOT enable log statement or log duration

Result:

LOG: duration: 1001.474 ms statement: select pg_sleep(1);

6 / 40

log line prefix
Pre-pended to every log message.

log_line_prefix = '%t [%p]: [%l-1] %quser=%u,db=%d,app=%a,client=%h '

Includes:

%t - Timestamp

%p - Process ID (pid)

%l - Session Line Number

%u - Logged in user

%d - Database logged in to

%a - Application name (if set)

%h - Remote host

%q - Stop here in non-session processes

Result:

2016-09-12 14:43:04 EDT [2830]: [11-1] ...
user=sfrost,db=postgres,app=psql,client=[local] ...
LOG: duration: 1001.193 ms statement: select pg_sleep(1);

7 / 40

log checkpoints
Logs information about each checkpoint

log_checkpoints = on

Includes:

When/Why the checkpoint started

When the checkpoint completed

Statistics regarding what happened during checkpoint

Result:

2016-09-12 14:51:02 EDT [2609]: [3-1] LOG: ...
checkpoint starting: immediate force wait

2016-09-12 14:51:02 EDT [2609]: [4-1] LOG: ...
checkpoint complete: wrote 67 buffers (0.4%); ...
0 transaction log file(s) added, 0 removed, 0 recycled; ...
write=0.000 s, sync=0.059 s, total=0.068 s; sync files=18, ...
longest=0.025 s, average=0.003 s; distance=88 kB, estimate=88 kB

8 / 40

Connection logging
Logs information about each connection and disconnection

log_connection = on
log_disconnection = on

Includes:

When/Why the checkpoint started

When the checkpoint completed

Statistics regarding what happened during checkpoint

Result:

2016-09-12 15:07:07 EDT [19608]: [1-1] user=[unknown],db=[unknown],...
app=[unknown],client=[local] LOG: connection received: host=[local]

2016-09-12 15:07:07 EDT [19608]: [2-1] user=sfrost,db=postgres,...
app=[unknown],client=[local] ...
LOG: connection authorized: user=sfrost database=postgres

2016-09-12 15:07:08 EDT [19608]: [3-1] user=sfrost,db=postgres,...
app=psql,client=[local] LOG: disconnection: ...
session time: 0:00:01.231 user=sfrost database=postgres host=[local]

9 / 40

log lock waits
Logs information when a query waits on a lock

log_lock_waits = on

Fires after 1s (deadlock timeout). Result:

2016-09-12 16:44:14 EDT [29554]: [8-1] user=sfrost,db=postgres,...
app=psql,client=[local] LOG: process 29554 ...
still waiting for ShareLock on transaction 668 after 1000.045 ms

2016-09-12 16:44:14 EDT [29554]: [9-1] user=sfrost,db=postgres,...
app=psql,client=[local] DETAIL: ...
Process holding the lock: 29617. Wait queue: 29554.

2016-09-12 16:44:14 EDT [29554]: [10-1] user=sfrost,db=postgres,...
app=psql,client=[local] CONTEXT: ...
while locking tuple (0,1) in relation "t1"

2016-09-12 16:44:14 EDT [29554]: [11-1] user=sfrost,db=postgres,...
app=psql,client=[local] STATEMENT: select * from t1 for update;

10 / 40

log temp files

Logs information when a query needs to create temp files

log_temp_files = 0

Value is how large the temp file is, zero means all. Result:

2016-09-12 17:06:04 EDT [29554]: [51-1] user=sfrost,db=postgres,...
app=psql,client=[local] LOG: ...
temporary file: path "base/pgsql_tmp/pgsql_tmp29554.2", size 1540096

2016-09-12 17:06:04 EDT [29554]: [52-1] user=sfrost,db=postgres,...
app=psql,client=[local] STATEMENT: select * from t1 order by 1;

11 / 40

log autovacuum min duration

Logs autovacuum activity

log_autovacuum_min_duration = 0

Value is how long the autovacuum command took

2016-09-12 17:10:56 EDT [357]: [1-1] LOG: ...
automatic vacuum of table "postgres.public.t1": index scans: 0

pages: 487 removed, 0 remain, 0 skipped due to pins
tuples: 110000 removed, 0 remain, 0 are dead but not yet removable
buffer usage: 1480 hits, 2 misses, 3 dirtied
avg read rate: 0.107 MB/s, avg write rate: 0.160 MB/s
system usage: CPU 0.00s/0.02u sec elapsed 0.14 sec

2016-09-12 17:10:56 EDT [357]: [2-1] LOG: ...
automatic analyze of table "postgres.public.t1" ...
system usage: CPU 0.00s/0.00u sec elapsed 0.00 sec

12 / 40

Log Analysis

Running pgBadger

apt-get install pgbadger

pgbadger logfile

Fancy reports!

13 / 40

pg stat statements

Installing pg stat statements

shared_preload_libraries = 'pg_stat_statements'
track_io_timing = on

Restart (not reload) PostgreSQL

sfrost@beorn:˜# psql

psql (12.1 (Ubuntu 12.1-1.pgdg19.04+1))

=# create extension pg_stat_statements;

14 / 40

pg stat statements

Reviewing pg stat statements

View "public.pg_stat_statements"
Column | Type | Modifiers

---------------------+------------------+-----------
userid | oid |
dbid | oid |
queryid | bigint |
query | text |
calls | bigint |
total_time | double precision |
min_time | double precision |
max_time | double precision |
mean_time | double precision |
stddev_time | double precision |
rows | bigint |

...

15 / 40

pg stat statements

Reviewing pg stat statements

View "public.pg_stat_statements"
Column | Type | Modifiers

---------------------+------------------+-----------
shared_blks_hit | bigint |
shared_blks_read | bigint |
shared_blks_dirtied | bigint |
shared_blks_written | bigint |
local_blks_hit | bigint |
local_blks_read | bigint |
local_blks_dirtied | bigint |
local_blks_written | bigint |
temp_blks_read | bigint |
temp_blks_written | bigint |
blk_read_time | double precision |
blk_write_time | double precision |

16 / 40

pg stat statements

Reviewing pg stat statements

queryid | 3374102836
query | UPDATE pgbench_tellers

SET tbalance = tbalance + ? WHERE tid = ?;
calls | 40000
total_time | 4735.07000000014
min_time | 0.012
max_time | 142.15
mean_time | 0.11837675
stddev_time | 1.30052157525719
rows | 40000

17 / 40

pg stat statements

Reviewing pg stat statements

queryid | 3619888345
query | SELECT abalance FROM pgbench_accounts WHERE aid = ?;
calls | 40000
total_time | 516.500999999987
min_time | 0.008
max_time | 0.085
mean_time | 0.0129125249999999
stddev_time | 0.00338086869374945
rows | 40000

18 / 40

Understanding Why Queries Are Slow

PostgreSQL Configuration Issues

Dead tuples / bloat

Query Plan

19 / 40

PostgreSQL Configuration

work mem

maintenance work mem

effective cache size

shared buffers

checkpoint segments

min wal size

max wal size

checkpoint timeout

checkpoint completion target

20 / 40

PostgreSQL Configuration - work mem

May be allocated many times over

Also used for bitmaps max size; bitmaps reduce their accuracy when its too much.

21 / 40

PostgreSQL Configuration - maintenance work mem

Allocated by autovacuum worker process, as needed

All parallel CREATE INDEX processes will only use up to maintenance work mem in total

22 / 40

PostgreSQL Configuration - effective cache size

NEVER actually allocated

Estimate of size of disk cache

Larger increases index usage, might not always be helpful

23 / 40

PostgreSQL Configuration - shared buffers

Allocated at server start

Caches disk pages, more-or-less exactly

25 - 50 percent of system memory is typical

pg buffercache useful to analyze contents

24 / 40

PostgreSQL Configuration - checkpoints, wal size

min wal size

Minimum size of the WAL to maintain
Creating new WAL files is not free

max wal size

Maximum size of WAL to allow
If too low, checkpoints will happen BEFORE checkpoint timeout!

checkpoint segments

Old option, replaced by max wal size

checkpoint timeout

Controls length of time between checkpoints
WAL replay starts from last checkpoint on crash

checkpoint completion target

How much of checkpoint timeout to use to perform a checkpoint

25 / 40

Dead Tuples / Bloat

VACUUM marks records as reusable

Reusable tuples used for new inserts/updates
PG still has to consider those tuples in scans, etc

Bloat

Table can have lots of dead tuples
Indexes can have bloat also

check postgres.pl

Helps identify tables to check for bloat
Some bloat is helpful

Eliminating all bloat requires a rewrite

CLUSTER / VACUUM FULL

26 / 40

Retriving Data

Sequentially step through EVERY record

Seq Scan Node
Bulk operation
Bitmap scan

Use an index, pull SPECIFIC records

Index Scan Node
Indexes generally have to be created
Often requires accessing index and heap
Data can be returned in order

Index Only Scan

Index Only Scan Node
Columns must be in index
May require going to the heap
VACUUM updates visibility map

27 / 40

Putting things together (Joins)

Nested Loop

Step through one table
For each step, look up record in other table
Fast- for small sets, not good for bulk

Merge Join

Order (sort) each table
Walk through both tables, return matches
Good for bulk operations
Sorting is expensive, can use index

Hash Join

Scan one table and build a hash table
Step through other table using the hash table to find matches
Slow start
Very fast, but memory intensive

28 / 40

Adding it all up (Aggregates)

Group Agg

Order / sort input
Step through each record, if it matches last, combine
Sorting is expensive

Hash Agg

Scan table, building hash table
Hash table matches are combined
Memory intensive

29 / 40

What’s the best plan?

It Depends!

Database gathers and uses statistics

ANALYZE
VACUUM ANALYZE
pg statistic
Autovacuum

Bad stats = Bad plans

EXPLAIN ANALYZE
Check results vs. estimates
Statistics target

30 / 40

Automating collection of plans

auto explain

Logs explain for queries
Based on length of time

Enabling

shared_preload_libraries = 'auto_explain'
explain.log_min_duration = 50;
explain.log_nested_statements = true;

Can also do ’explain analyze’, but very expensive!
Logging nested statements

31 / 40

Analyzing plans

Explain output options

XML
JSON
YAML

Tools for analyzing explain

pgAdmin3/4
explain.depesz.com

32 / 40

Fixing Slow Queries

Low-hanging fruit

Indexes

Seq Scan?
Only one row returned?
No aggregation?
Create an index

work mem

Small data set?
Sorting happening?
Merge Join used?
Increase work mem

33 / 40

Fixing Slow Queries

Statistics

Large data set?
Nested Loop?
Ensure current statistics (ANALYZE)
Increase statistics target

Indexes w/ Foreign Keys

DELETE is slow?
Table referred to with foreign key?
Create index on referring table

34 / 40

Prepared Queries

Plan Once, run many

Avoids repeated planning cost
Plan Cache has generic and specific plans
5-time rule

Explain analyze with execute

prepare q as select * from mytable where x = $1;
explain execute q('myid');
explain analyze execute q('myid');

35 / 40

Query Review

select count(*) from table;

Index can help- Index Only Scan
Still must check all records

select * from table;

Returns all columns and rows...
Is every row needed?
Is every column needed?
de-TOAST can be expensive

select distinct * from a, b, c where a.x = b.x;

Watch out for ’select distinct’
Missing join condition for ’c’
Cartesian product created, then dups removed
Join syntax is better
select * from a join b using (x) join c using (x);

36 / 40

More Queries

select * from x where myid in (select myid from bigtable);

Could be turned into a join
Joins allow more options for how to execute the query
Generally, a faster way is found

select * from x where myid not in (select myid from bigtable);

Left-join can be used instead
May be able to use NOT EXISTS instead

37 / 40

Even More Queries

Use CTEs

Keep the results of them small
WITH cte AS (select * from expensive join)
select cte.result, othertable.x from cte join othertable;

Really, really faster count(*) estimate

Use the database statistics
pg class.reltuples
Only useful for whole tables
Will not be perfect
Trigger-based approach

38 / 40

Review, and then some

Tuning PG

Increase work mem, maintenance work mem
Set effective cache size based on memory
Increase shared buffers

Partial Indexes / Functional Indexes

Index only part of the table
Use a function inside an index
Double-check query plans use the index

Remove unused indexes

Unused indexes still have to be maintained
More indexes, slower writes
PG statistics- review pg stat user indexes

39 / 40

Questions?

Questions?

Follow Planet PostgreSQL! https://planet.postgresql.org

Join PostgreSQL.EU! https://postgresql.eu

Join PostgreSQL.US! https://postgresql.us

Thanks!

40 / 40

https://planet.postgresql.org
https://postgresql.eu
https://postgresql.us

