|dentifying Slow Queries, and Fixing Them!

£2"CRUNCHY

Enterprise PostgreSQL

Stephen Frost

Chief Technology Officer @ Crunchy Data
Committer, PostgreSQL

Major Contributor, PostgreSQL

GSSAPI Ecryption in v12

Row-Level Security in 9.5

Column-level privileges in 8.4
Implemented the roles system in 8.1

Contributions to PL/pgSQL, PostGIS

2/40

% CRUNCHY

Enterprise PostgresQL

Community!

@ Follow Planet PostgreSQL! https://planet.postgresgl.org
@ Join PostgreSQL.EU! https://postgresgl.eu
@ Join PostgreSQL.US! https://postgresqgl.us

% CRUNCHY

3/40 Enterprise PostgresQL

https://planet.postgresql.org
https://postgresql.eu
https://postgresql.us

Finding Slow Queries

@ Logging- Enable with postgresql.conf
@ Log Analysis- Generate reports (pgBadger)

@ Viewing Active Queries (pg-stat_statements)

4/40

% CRUNCHY

Enterprise PostgresQL

Logging

postgresql.conf configuration

@ log_min_duration_statement
log_line_prefix
log_checkpoints
log_connections
log_disconnections
log_lock_waits

log_temp_files

log_autovacuum_min_duration

5/40

% CRUNCHY

Enterprise PostgresQL

log_min_duration_statement

log_min_duration_statement = 0

Zero Logs every statement sent
Number is in milliseconds
Queries taking longer than value logged

Includes duration *on the same line*

Do NOT enable log_statement or log_duration

Result:

LOG: duration: 1001.474 ms statement: select pg_sleep(l);

6/40

% CRUNCHY

Enterprise PostgresQL

log_line_prefix
Pre-pended to every log message.

log_line_prefix = '%t [%p]: [%1-1] $quser=%u,db=%d, app=%a,client=%h '

Includes:
@ %t - Timestamp

@ %p - Process ID (pid)

@ %l - Session Line Number

@ %u - Logged in user

@ %d - Database logged in to

@ %a - Application name (if set)

@ %h - Remote host

@ %q - Stop here in non-session processes
Result:
2016-09-12 14:43:04 EDT [2830]: [11-1]

user=sfrost, db=postgres, app=psqgl,client=[local]
LOG: duration: 1001.193 ms statement: select pg_sleep(l);

% CRUNCHY

7/40 Enterprise PostgresQL

log_checkpoints

Logs information about each checkpoint

log_checkpoints = on

Includes:
@ When/Why the checkpoint started
@ When the checkpoint completed
@ Statistics regarding what happened during checkpoint

Result:

2016-09-12 14:51:02 EDT [2609]: [3-1] LOG:
checkpoint starting: immediate force wait

2016-09-12 14:51:02 EDT [2609]: [4-1] LOG:

checkpoint complete: wrote 67 buffers (0.4%);

0 transaction log file(s) added, 0 removed, 0 recycled;
write=0.000 s, sync=0.059 s, total=0.068 s; sync files=18,
longest=0.025 s, average=0.003 s; distance=88 kB, estimate=88 kB

% CRUNCHY

8/40 Enterprise PostgresQL

Connection logging

Logs information about each connection and disconnection

log_connection = on
log_disconnection = on

Includes:

@ When/Why the checkpoint started

@ When the checkpoint completed

@ Statistics regarding what happened during checkpoint
Result:

2016-09-12 15:07:07 EDT [19608]: [1-1] user=[unknown],db=[unknown], ...
app=[unknown],client=[local] LOG: connection received: host=[local]
2016-09-12 15:07:07 EDT [19608]: [2-1] user=sfrost,db=postgres, ...
app=[unknown],client=[local] ..
LOG: connection authorized: user=sfrost database=postgres
2016-09-12 15:07:08 EDT [19608]: [3-1] user=sfrost,db=postgres, ...
app=psqgl,client=[local] LOG: disconnection:
session time: 0:00:01.231 user=sfrost database=postgres host=[local]

®
9/40 >CRUNCHY

Enterprise PostgresQL

log_lock_waits

Logs information when a query waits on a lock

log_lock_waits = on

Fires after 1s (deadlock_timeout). Result:

2016-09-12 16:44:14 EDT [29554]: [8-1] user=sfrost,db=postgres, ...
app=psqgl,client=[local] LOG: process 29554
still waiting for Sharelock on transaction 668 after 1000.045 ms

2016-09-12 16:44:14 EDT [29554]: [9-1] user=sfrost,db=postgres, ...
app=psql,client=[local] DETAIL:
Process holding the lock: 29617. Wait queue: 29554.

2016-09-12 16:44:14 EDT [29554]: [10-1] user=sfrost,db=postgres, ...
app=psql,client=[local] CONTEXT:
while locking tuple (0,1) in relation "t1"

2016-09-12 16:44:14 EDT [29554]: [11-1] user=sfrost,db=postgres, ...
app=psql,client=[local] STATEMENT: select * from tl for update;

5
10/ 40 ZCRUNCHY

log_temp_files

Logs information when a query needs to create temp files

log_temp_files = 0

Value is how large the temp file is, zero means all. Result:

2016-09-12 17:06:04 EDT [29554]: [51-1] user=sfrost,db=postgres, ...
app=psqgl,client=[local] LOG:
temporary file: path "base/pgsqgl_tmp/pgsqgl_tmp29554.2", size 1540096
2016-09-12 17:06:04 EDT [29554]: [52-1] user=sfrost,db=postgres, ...
app=psqgl,client=[local] STATEMENT: select * from tl order by 1;

®
1140 >CRUNCHY

Enterprise PostgresQL

log_autovacuum_min_duration

Logs autovacuum activity

log_autovacuum_min_duration = 0

Value is how long the autovacuum command took

2016-09-12 17:10:56 EDT [357]: [1-1] LOG:
automatic vacuum of table "postgres.public.tl": index scans: 0
pages: 487 removed, 0 remain, 0 skipped due to pins
tuples: 110000 removed, 0 remain, 0 are dead but not yet removable
buffer usage: 1480 hits, 2 misses, 3 dirtied
avg read rate: 0.107 MB/s, avg write rate: 0.160 MB/s
system usage: CPU 0.00s/0.02u sec elapsed 0.14 sec
2016-09-12 17:10:56 EDT [357]: [2-1] LOG:
automatic analyze of table "postgres.public.tl"
system usage: CPU 0.00s/0.00u sec elapsed 0.00 sec

&
12/40 ZCRUNCHY

Log Analysis

Running pgBadger
@ apt-get install pgbadger
@ pgbadger logfile

@ Fancy reports!

13/40

% CRUNCHY

Enterprise PostgresQL

pg_stat_statements

Installing pg_stat_statements

shared_preload_libraries = 'pg_stat_statements'
track_io_timing = on

@ Restart (not reload) PostgreSQL
sfrost@beorn: "# psqgl
psgl (12.1 (Ubuntu 12.1-1.pgdgl9.04+1))

=# create extension pg_stat_statements;

14 /40

£ CRUNCRY

Enterprise PostgresQL

pg_stat_statements

Reviewing pg_stat_statements

View "public.
Column

userid
dbid
queryid
query
calls
total_time
min_time
max_time
mean_time
stddev_time
rows

|
+
|
|
|
|
|
|
|
|
|
|
|

bigint
double
double
double
double
double
bigint

precision
precision
precision
precision
precision

15/40

pg_stat_statements"
Type

Modifiers

£ CRUNCRY

Enterprise PostgresQL

pg,stat,staten1ents
Reviewing pg_stat_statements

View "public.pg_stat_statements"

blk_read_time
blk_write_time

Column | Type | Modifiers

_____________________ T
shared_blks_hit | bigint |
shared_blks_read | bigint |
shared_blks_dirtied | bigint |
shared_blks_written | bigint |
local_blks_hit | bigint |
local_blks_read | bigint |
local_blks_dirtied | bigint |
local_blks_written | bigint |
temp_blks_read | bigint |
temp_blks_written | bigint |
| |
| |

$
16 /40 ZCRUNCHY

pg_stat_statements

Reviewing pg_stat_statements

queryid | 3374102836

query | UPDATE pgbench_tellers
SET tbalance = tbalance + ? WHERE tid = ?;

calls | 40000

total_time | 4735.07000000014

min_time | 0.012

max_time | 142.15

mean_time | 0.11837675

stddev_time | 1.30052157525719

rows | 40000

$
17/40 ZCRUNCHY

pg_stat_statements

Reviewing pg_stat_statements

queryid 3619888345

query SELECT abalance FROM pgbench_accounts WHERE aid = ?;
calls 40000

total_time 516.500999999987

0.085
0.0129125249999999
0.00338086869374945
40000

max_time
mean_time
stddev_time

\

\

\

\
min_time | 0.008

\

\

\
rows |

$
18/40 ZCRUNCHY

Understanding Why Queries Are Slow

@ PostgreSQL Configuration Issues
@ Dead tuples / bloat
@ Query Plan

2." RUNCHY

terprise PostgresQL

19/40

PostgreSQL Configuration

work_mem
maintenance_work_mem
effective_cache_size
shared_buffers
checkpoint_segments
min_wal_size
max_wal_size

checkpoint_timeout

checkpoint_completion_target

20/40

% CRUNCHY

Enterprise PostgresQL

PostgreSQL Configuration - work_mem

@ May be allocated many times over

@ Also used for bitmaps max size; bitmaps reduce their accuracy when its too much.

$
21/40 ZCRUNCHY

PostgreSQL Configuration - maintenance work_mem

@ Allocated by autovacuum worker process, as needed

@ All parallel CREATE INDEX processes will only use up to maintenance_work_mem in total

$
22/40 ZCRUNCHY

PostgreSQL Configuration - effective_cache size

@ NEVER actually allocated
@ Estimate of size of disk cache

@ Larger increases index usage, might not always be helpful

%n RUNCHY

terprise PostgresQL

23/40

PostgreSQL Configuration - shared _buffers

@ Allocated at server start
@ Caches disk pages, more-or-less exactly
@ 25 - 50 percent of system memory is typical

@ pg_buffercache useful to analyze contents

24 /40

% CRUNCHY

Enterprise PostgresQL

PostgreSQL Configuration - checkpoints, wal size

@ min_wal_size

e Minimum size of the WAL to maintain
o Creating new WAL files is not free

@ max_wal_size

e Maximum size of WAL to allow
o If too low, checkpoints will happen BEFORE checkpoint timeout!

@ checkpoint_segments
e Old option, replaced by max_wal_size
@ checkpoint_timeout

e Controls length of time between checkpoints
o WAL replay starts from last checkpoint on crash

@ checkpoint_completion_target

e How much of checkpoint timeout to use to perform a checkpoint

% CRUNCHY
Enterprise PostgreSQL

25 /40

Dead Tuples / Bloat

VACUUM marks records as reusable

e Reusable tuples used for new inserts/updates
e PG still has to consider those tuples in scans, etc

@ Bloat

e Table can have lots of dead tuples
o Indexes can have bloat also

@ check_postgres.pl

e Helps identify tables to check for bloat
e Some bloat is helpful

Eliminating all bloat requires a rewrite
CLUSTER / VACUUM FULL

&
26 /40 ZCRUNCHY

Retriving Data

@ Sequentially step through EVERY record

e Seq Scan Node
o Bulk operation
e Bitmap scan

@ Use an index, pull SPECIFIC records

Index Scan Node

Indexes generally have to be created
Often requires accessing index and heap
Data can be returned in order

@ Index Only Scan

Index Only Scan Node

Columns must be in index

May require going to the heap
VACUUM updates visibility map

27/40

% CRUNCHY

Enterprise PostgresQL

Putting things together (Joins)

@ Nested Loop

o Step through one table
e For each step, look up record in other table
e Fast- for small sets, not good for bulk

@ Merge Join

Order (sort) each table

Walk through both tables, return matches
Good for bulk operations

Sorting is expensive, can use index

@ Hash Join

Scan one table and build a hash table

Step through other table using the hash table to find matches
Slow start

Very fast, but memory intensive

2; RUNCHY

terprise PostgresQL

28 /40

Adding it all up (Aggregates)

@ Group Agg

o Order / sort input
e Step through each record, if it matches last, combine
e Sorting is expensive

@ Hash Agg

e Scan table, building hash table
e Hash table matches are combined
e Memory intensive

#CRUNCHY

terprise PostgresQL

29 /40

What's the best plan?

@ It Depends!

@ Database gathers and uses statistics

ANALYZE

VACUUM ANALYZE
pg-statistic
Autovacuum

@ Bad stats = Bad plans

o EXPLAIN ANALYZE
o Check results vs. estimates
e Statistics target

30/40

e
Ent

RUNCHY

terprise PostgresQL

Automating collection of plans

@ auto_explain

o Logs explain for queries
o Based on length of time

@ Enabling
shared_preload_libraries = 'auto_explain'
explain.log_min_duration = 50;
explain.log_nested_statements = true;

e Can also do 'explain analyze', but very expensive!
o Logging nested statements

31/40

% CRUNCHY

Enterprise PostgresQL

Analyzing plans

@ Explain output options

o XML
e JSON
e YAML

@ Tools for analyzing explain

e pgAdmin3/4
e explain.depesz.com

32/40

e
Ent

RUNCHY

terprise PostgresQL

Fixing Slow Queries

Low-hanging fruit
@ Indexes
e Seq Scan?
e Only one row returned?

o No aggregation?
o Create an index

@ work_mem

e Small data set?

e Sorting happening?
o Merge Join used?
e Increase work_mem

33/40

% CRUNCHY

Enterprise PostgresQL

Fixing Slow Queries

@ Statistics

o Large data set?

o Nested Loop?

o Ensure current statistics (ANALYZE)
e Increase statistics target

@ Indexes w/ Foreign Keys

o DELETE is slow?
e Table referred to with foreign key?
o Create index on referring table

34/40

e
Ent

RUNCHY

terprise PostgresQL

Prepared Queries

@ Plan Once, run many

e Avoids repeated planning cost
e Plan Cache has generic and specific plans
e 5-time rule

@ Explain analyze with execute

prepare g as select x from mytable where x = $1;
explain execute g('myid');
explain analyze execute g('myid');

35/40

% CRUNCHY

Enterprise PostgresQL

Query Review

@ select count(*) from table;

e Index can help- Index Only Scan
o Still must check all records

@ select * from table;

Returns all columns and rows...
Is every row needed?

Is every column needed?
de-TOAST can be expensive

@ select distinct * from a, b, c where a.x = b.x;

Watch out for 'select distinct’

Missing join condition for 'c’

Cartesian product created, then dups removed
Join syntax is better

select * from a join b using (x) join c using (x);

&
36 /40 ZCRUNCHY

More Queries

@ select * from x where myid in (select myid from bigtable);

o Could be turned into a join
e Joins allow more options for how to execute the query
o Generally, a faster way is found

@ select * from x where myid not in (select myid from bigtable);

e Left-join can be used instead
e May be able to use NOT EXISTS instead

&
37/40 ZCRUNCHY

Even More Queries

@ Use CTEs

o Keep the results of them small
o WITH cte AS (select * from expensive join)
e select cte.result, othertable.x from cte join othertable;

@ Really, really faster count(*) estimate

Use the database statistics
pg_class.reltuples

Only useful for whole tables
Will not be perfect
Trigger-based approach

&
38/40 ZCRUNCHY

Review, and then some

@ Tuning PG

e Increase work_mem, maintenance_work_mem
o Set effective_cache_size based on memory
o Increase shared_buffers

@ Partial Indexes / Functional Indexes

o Index only part of the table
e Use a function inside an index
e Double-check query plans use the index

@ Remove unused indexes

o Unused indexes still have to be maintained
o More indexes, slower writes
o PG statistics- review pg_stat_user_indexes

39/40

% CRUNCHY

Enterprise PostgresQL

Questions?

Questions?

@ Follow Planet PostgreSQL! https://planet.postgresqgl.org
@ Join PostgreSQL.EU! https://postgresgl.eu
@ Join PostgreSQL.US! https://postgresgl.us

Thanks!

&
40/40 ZCRUNCHY

https://planet.postgresql.org
https://postgresql.eu
https://postgresql.us

