TOSHIBA

FOSDEM PGDAY 2020

PGSplder... X

High- performance SQL
cluster engine.

Taiga Katayama

Jan 31, 2020

Self-introduction

« Name: Taiga Katayama @
* Live in Tokyo. ‘ij‘

* Engineer at TOSHIBA CORPORATION, Open Source
technology department.

« Working on the database technology for 10 years.

« Development of RDBMS and DB integration software using
PostgreSQL and SQLite.

* Since 2016 in relation to PostgreSQL.
« Mainly developing FDW.

© 2020 Toshiba Corporation 2

Agenda

 Overview of PGSpider

* Features

» Cascade connection
Multi-Tenant
Parallel processing

Pushdown

Keep-Alive

* Internal mechanism

« How to realize features

e Performance measurement

* Summary

© 2020 Toshiba Corporation

3

 Overview of PGSpider

* Features

* Cascade connection
Multi-Tenant
Parallel processing

Pushdown

Keep-Alive

* Internal mechanism

« How to realize features

e Performance measurement

* Summary

© 2020 Toshiba Corporation 4

Which Distributed SQL Engines is Better?

In lloT Era, Distributed SQL Engine is a Important Technology !!

The Industrial Internet of Thing (lloT) Era is coming.
* |loT data enable to accurate various growth with Al
(such as manufacturing, power plant).

Challenges:
How to consolidate data distributed in various databases?
 InlloT Era, Data sources/Databases are NOT in one database.

Solution: Distributed SQL Engine

* It is one of core technologies in Our Cyber Physical Systems
Strategy.

- reference:
https://www.toshiba.co.jp/about/ir/en/pr/pdf/tpr20181122e 2.pdf

« We are going to show you Performance Benchmark of them.

© 2020 Toshiba Corporation 5

https://www.toshiba.co.jp/about/ir/en/pr/pdf/tpr20181122e_2.pdf

Where are Data Sources?

Data Source/Database is distributed in various places.

Current Future
@®In each Systems @In each Data Lakes (Data Fabric (interconnect Data)
Distributed SQL Engines
C ’b Cloud oudt ~)
Lake (/,’thﬁi{\ Toke
Operation Maintenance I'l \ Ogeration Maintenance
Data Data 1] \ Rata Data
; 1 LV J
; 1 \ \
\
A A A N Y T G
- - - - - = - - - - ’, \‘ i--
Plant #1 Plant #N Plant #1 Plant #N Plant #1] N Plaftt #N
Lake Lak Lake1 Lak
o e o 9
Dperation Maintenangs Operation] Maintenangs Operation Maintenance Operation Maintenancs Operation Malptenance Operation Maintenancg
\Data Data J Data Data / \Data 'Data j \Data Data /
I S
/I\KI\/I\/I\/I'\/‘\l\
Factory #1 . Factory #M Factory #1 Factory #M Fact 'y #1
Lake Lake
Y L . ,
Dperation Maintenange Dperation Maintenands Operation Maintenance

Lake
Operation Maintenance
Data/

\ Data

Fact'ory #M

Lake
Operation Maintenance
DataJ

Operation Maintenancg
Data Data / \ Data

Data J
© 2020 Toshiba Corporation 6

What is PGSpider?

- Retrieval from Cloud -Retrieval directly from edge as device side
Before * Consider sampling interva -Retrieval raw data, Not consider sampling interval
- Wait upload schedule - Cross-searching, No time lag

-Same I/F (SQL), Heterogeneous multi data source

Cloud DB
Search] Data Target : All Device
. Query < Analysis _ gmwm | Time: 10:00:02~10:00:05
A — T
—T— ‘ Search Query

Data Analysis .
Send Cloud \ Y PGSpider
by the minute
<_/ Sensor <_/ Sensor

:011.0 10000112
3 second 10:00:02 1.1 10:00:02 0.9
interval 10:00:03 1.0 10:00:03 1.0
10:00:04 1.2 R EEE 22009090909 Bl 10:00:05 1.7 e 10:00:050.c pum 10:00:05 1./ m 10:00:05 s
10:00:05 1.1 10:00:05 0.9
10:00:06 1.2 10:00:06 1.0
<—110:00:07 1.0 10:00:07 1.1
10:00:08 1.1 10:00:08 1.1 q/ Sensor Q/ Sensor Q/ Sensor <:/ Sensor

Exiéfing Systém System using PGSpider

© 2020 Toshiba Corporation 7

PGSpider’s Features: Overview

Retrieve the distributed data source vertically.

3) Parallel processing:
Improve retrieval performance

1) Cascade connection:
Have scalability 4) Pushdown:
Reduce communications
traffic

GridDB ~ SQLumDash SQlite PostgreSQL InfluxDB Csv TimescaleQ

5) Keep-alive feature:

2) Multi-tenant feature: : '
) Multi-tenant feature Retrieve data excepting dead node

Enable to view multi data sources as
a virtual single database © 2020 Toshiba Corporation 8

Agenda

 Overview of PGSpider

* Features

» Cascade connection
Multi-Tenant
Parallel processing

Pushdown

Keep-Alive

e Internal mechanism

« How to realize features

e Performance measurement

* Summary

© 2020 Toshiba Corporation 9

Features: Cascade connection

PGSpider can connect to PGSpider.

« Make it possible to access a number of data sources.

PGSpider
PGSpider [PGSpider
] GSpider] GSpider 'PGSpider
1 T T
E v ﬁ Y ﬁ y ﬁ y E v E Y
Data Data Data Data Data Data
source source source source source source

© 2020 Toshiba Corporation 10

Features: Multi-Tenant

User can get records in multi tables by one SQL easily.

 There are tables with similar schema in each data source.
PGSpider can view them as a single virtual table.

e User can see the table collected from
tables in each data source by UNION ALL. (mteger) (text) (mteger)

‘ds1datal’
234 ‘ds1data2’ 2
111 ‘ds2datal’ 10
222 ‘ds2data2’ 20
SELECT * FROM table1 T 100 ‘ds3datal’ 100
GSpider 200 ‘ds3data2’ 200

|

i]
i Data Data Data]
i |

sourcel source2 source3
“="HD) Value1 Value2 |ma ID Value1 VaIueZ
(mteger) (text) (mteger) (mteger) (text) (mteger)
11 ‘ds1datal" 1 ‘ds2data1’ ‘ds3datal’

22 ‘ds1data2'’ 2 22 ‘ds2data2' 20 32 ‘ds3data2' 200 11

Features: Multi-Tenant

« Example of aggregate function on Multi-Tenant.

« table1 is expanded to ds1.table1+ ds2.table1+
ds3.table1 logically.

333

SELECT sum(Value2) FROM table1

[»] Value1 Value2 ID Value1 Value2 ID Value1 Value2
(mteger) (text) (integer) (integer) | (text) (integer) (integer) | (text) (integer)

Features: Filtering nodes on Multi-Tenant

« User might want to filter nodes for multi tenant table.

» PGSpider supports new IN-clause to specify the target node.
* Node location is expressed by URL.

« User might want to know where the result row is stored.

° PGSp|der returns a result set m_
002 3 /PGSpider2/PGSpider4/DS1
011 6 /PGSpider2/PGSpider4/DS2
SELECT * FROM table1 IN (‘/PGSpider2/") T 012 14 /PGSpider2/PGSpider4/DS2
°GSpider1
T 112 9 /PGSpider2/PGSpider5/DS4
e s SRR ; !
: PGSpider2 : GSpider3
I I I ﬁ
| \2 v |
: JGSpider4 GSpider5 [DS5 = DS6
I) | [1D [Value| [ll[1D [Value]
| i/ i \L i [201 12 211 10
I I 202 8 212 11
lﬁ DS1 E DS2 E DS3 E DS4 |
B [1D [Value] Jll [ID [Value] [1D [value| Il [1D [Value]ll
I o001 5 011 6 101 11 111 I

7
~ ' 002 3 - =012 14 = = =+102 10 = = 112 9 °* © 2020 Toshiba Corporation 13

Features: Parallel processing

Executes queries and fetches results from child

nodes in parallel.

 Improve retrieval performance.

‘PGSpider

LA
“PGSpider —PGSpider = Data . Data

source source

© 2020 Toshiba Corporation 14

Result Actual Data
| ID_[Value [ID |Value

Features: Pushdown

Pushdown expressions to child node.

Supporting expression

Retrieving records with SELECT ... e WHERE condition
u ” WHERE
Value” greater than 10. gl « ORDER BY
« Aggregate function
SELECT ., « GROUP BY
Value>10
“PGSpider “PGSpider
SELECT ... T SELECT ... SELECT ... T SELECT ...

WHERE WHERE WHERE WHERE

Value>10 Value>10

Value>10 Value>10

: GSpider : GSpider “PGSpider E]PGSpider

SELECT ... SELECT ...
WHERE WHERE
Value>10 Value>10

SELECT ... SELECT ... SELECT ... SELECT ... SELECT ... SELECT ...
WHERE WHERE WHERE WHERE WHERE WHERE
Value>10 Value>10 Value>10 Value>10 Value>10 Value>10

001 5 011 6 101 11 M7 201 12 211 10 301 9 311 10
002 3 012 14 102 10 1129 202 8 212 11 302 8 312 8

© 2020 Toshiba Corporation 15

Result Actual Data
| ID_[Value [ID |Value

Features: Pushdown

Reduce communications traffic.

| 'OI;Z’ Supporting expression
Retrieving records with 101 11 « WHERE condition
Value” greater than 10. ;(133 ﬁ « ORDER BY

~PGSpider « Aggregate function
| ID |Valueld ID |Value|
012 14 | 202 12 « GROUP BY
101 12 212 11
‘PGSpider “PGSpider
| ID |[Valuefll ID [Value | ID [Valuef§ ID [Value|
012 14 | 101 11 202 12
l 212 11
: GSpider : GSpider “PGSpider E]PGSpider
| ID [Value} ID |Value| | ID |Valuefl ID [Value | ID [Valuef{ ID [Value| | ID _[Valuell ID [Value
012 14 101 11 202 12 | 212 11 31110
312 8

o B Bty B By Bt B

001 5 011 101 11 11 7 201 12 211 10 301 9 311 10
002 3 012 14 102 10 112 9 202 8 212 11 302 8 312 8

© 2020 Toshiba Corporation 16

Features: Keep-Alive

 There are issues if a node is dead.

* It might have to wait 5 S Error
timeout to get response JpGspider
from dead node. T
* Because an erroriis
returned to application, it ' E]P
cannot get a result. “PGSpider GSpider
* Dead node might revive. it

should check child node l

state in every query. = EEL imL %ﬁ

201 12 211 10 301 9 311 10
202 8 212 11 302 8 312 8

Dead node

Retrieves data from only valid child nodes.

© 2020 Toshiba Corporation 17

Features: Keep-Alive

Monitors child node state in the background.

* No need to wait timeout even if child node is dead.
* Ignore dead nodes.
TS

- 201 14
202 12
: . 211 10
PGS!older 212 11
301 9

302 8

‘PGSpider E]PGSpider

i.m ﬁm ﬁ.m

201 12 211 10 301 9 311 10
202 8 212 11 302 8 312 8
Dead node

© 2020 Toshiba Corporation 18

Agenda

 Overview of PGSpider

 Features

« Cascade connection
Multi-Tenant
Parallel processing

Pushdown

Keep-Alive

* Internal mechanism

« How to realize features

e Performance measurement

* Summary

© 2020 Toshiba Corporation 19

Module developed
PGSpider - by TOSHIBA

Internal architecture bstareSOL

Original Module

Develop PGSpider based on PostgreSQL.

1. PGSpider FDW : bridged multistage
Connection structure.
.] : g
request & PostqreSQl master Process 2. Scale-out retrleyal by Multi-Tenant.
\/ Fork 3. Parallel processing.
SQL Query .
- > PostgreSQL Backend Process 4. Pushdown expressions.
Query Parsing 5. Monitor Flata sc?urces.
| 6. FDW : bridge difference of SQL

Query Planner / Optimizer expression, interface and so on.

Query Execution 7. Tools

N Lol

Foreign Foreign Foreign Foreign Foreign Foreign Foreign Foreign

TablT@ Tab|le@ Tablel ablle% Tal?le@ Tabl$% Tablcla% Table |
|

Oracle MySQL PostgreSQL

pgspider_core

I
L L 1]

InfluxDB SQLite BSQLumbDash
FDW FDW FDW FDW FDW FDW FDW

Oracle MySQL PostgreSQL GridDB InfluxDB SQLite SQLumDash PGSpider

© 2020 Toshiba Corporation 20

GridDB

PGSpider
1. _FDW

What is FDW?

* Foreign Data Wrapper (FDW)

* This feature enables user to access the other database from

PostgreSQL
« User can access various data sources by installing Data
source FDW.
Analyze query Construct query for data source

Query from user m Query information m Query for data source

> PostgreSQL > >

- Result U Result from FDW U Result from data source

Generate final result Convert data for PostgreSQL

PGSpider uses PostgreSQL's FDW.

© 2020 Toshiba Corporation 21

What is pgspider_core?
pgspider_core bridges PostgreSQL core and data

source FDWs.

* Retrieve data from multi data sources using FDW of

data source.
« Seen from PostgreSQL core, pgspider_core is also one

of FDW.
PostgreSQL PGSpider
PostgreSQL core PostgreSQL core
\L FDW API call
FDW API call pgspider_core
FDW API call
postgr$es_fdw CSV—£ el postgres_fdw csv_fdw

Ccsv
AOSLiEECN PostgreSQL csv

© 2020 Toshiba Corporation 22

Multi-Tenant and schema construction

pgspider_core needs to expand Multi-Tenant table to

data source tables.

« Assuming that
 Foreign table for pgspider_core is created.
 Foreign tables for each data source are also created.

» Searches data source tables by name having
[Multi-Tenant table name] + " + [data source name].

PostgreSQL core pgspider=# \det

pgspider_core List of foreign tables
Schema | |

Data sourcel FDW Data source2 FDW e e e
$ $ publ%c | TableA | pgspider core
public | TableA dsl | dsl
Data source1 Data source2 public | TableA ds2 | ds2
TableA TableA

Get data source FDWs based on the naming rule.

© 2020 Toshiba Corporation 23

Parallel processing

pgspider_core creates threads for each child tables.

» Expand multi-tenant table to child tables.
 Create new threads for each child tables to access
corresponding data source.

PostgreSQL core

‘ aple
Operate in parallel }
child thread1 child thread2 child thread3

Data source1l FDW Data source2 FDW Data source3 FDW ...

Data source Data source?2 Data source3
TableA TableA TableA

© 2020 Toshiba Corporation 24

Pushdown

PGSpider uses PostgreSQL's pushdown feature.
« Execute WHERE-clause and aggregate function in child node.

No WHERE pushdown g WHERE pushdown
Filtering ——
No filtering
PostgreSQL core j PostgreSQL core i)

SELECT * FROM table SELECT * FROM table .
WHERE col=1 Return all data WHERE col=1 Return filtered data
pgspider_core pgspider_core
SELECT * FROM table .
ELECT * FROM I R 1 Return filtered data
SELEC OM table / eturn all data WHERE col=1 /
data source1 FDW data source1l FDW
SELECT * FROM table SELECT * FROM table Return filtered data
Return all data WHERE col=1

Data source Data source j Filtering

PostgreSQL core behaves on the assumption that

returned data is already filtered.

© 2020 Toshiba Corporation 25

Pushdown'’s issue and solution

Some data sources don't support to pushdown.

« PGSpider cannot pushdown unless all data sources support it
because data source FDW uses same query plan as that of
pgspider_core.

PostgreSQL core Filtering

SELECT * FROM table .
WHERE col=1 J/ /I\ Return filtered data

pgspider_core

data source1 FDW data source2 FDW
J/ /I\ Return all data J/ /I\

Does not support
WHERE clause Data source1 Data source?2 m

Create different query plans of data source FDW and pgspider_core.

© 2020 Toshiba Corporation 26

Solution of WHERE condition pushdown

PostgreSQL core do filtering even if pgspider_core

pushdowns.

PostgreSQL core Filtering

SELECT * FROM table .
WHERE col=1 l /I\ Return filtered data

pgspider_core

Query plan:
SELECT *
FROM table

data source1 FDW data source2 FDW, WHERE col=1
J/ /I\ Return all data J/ /I\Return filtered data

WHERE clause Data source Data source2

© 2020 Toshiba Corporation 27

Aggregate pushdown

Fall into similar situation as WHERE condition pushdown.
» PostgreSQL core expects that pgspider_core returns single
aggregated value.

PostgreSQL core

Return aggregated

and merged data . Ca|culate sum(col1) of data
from data source1l.

* Merge values from data
source1 and data source2.

SELECT sum(col) FROM table\l/ /I\

pgspider_core

Query plan:
SELECT *
FROM table

Return aggregated data Return a
(not aggregated)

SUTE[peE : Data source Data source?2 DEES o support
aggregate function aggregate function

data source1 FDW data source2 FD

pgspider_core do aggregation and merging.

© 2020 Toshiba Corporation

28

Keep-Alive

+ Alive checking process is implemented as BackGroundWorkerProcess.

* It manages node state on PostgreSQL shared memory which is

shared by backend processes.

» The process checks child node state independently from backend

processes.

* Ping to all child nodes and update state.

 pgspider_core on the backend process does not create thread for dead

node.

Backend process

PostgreSQL core

pgspider_core Read m

Data source1l FDW Data source2 FDW

ing

<— Data soucel Alive

Data souce2 Dead
T Update

$ p
Data sourcel <J IMZ «—

Keep-Alive process

© 2020 Toshiba Corporation 29

Agenda

 Overview of PGSpider

 Features

Cascade connection
Multi-Tenant
Parallel processing

Pushdown

Keep-Alive

e Internal mechanism

« How to realize features

e Performance measurement

* Summary

© 2020 Toshiba Corporation 30

Overview of performance measurement

« Compare the performance with competitive software.

* PGSpider vs Presto vs Apache Dirill vs Dremio.

» Data sources
» PostgreSQL as relational database.
 TimescaleDB as timeseries database.

e Condition

 Use default parameter for all software.

« Measure the 1st query execution time.
» Cache is reset on all nodes.

 Machines

« AWS: t3.xlarge (4vCPU), 6 instances
« OS : CentOS7
« Memory: 16GB

* Scenario
* We executed SQLs on 3 constitution.

© 2020 Toshiba Corporation 31

Scenarios

 Scenariol: Search for big tables stored in timeseries databases.

o LIMIT (Hit 1, 1000, 10000 records)
 ORDER BY with LIMIT (Hit 1 record)

* IWHERE (Hit 1 record)

* | Aggregate

» Aggregate with GROUP BY

» Aggregate with GROUP BY and HAVING

» Aggregate with GROUP BY and ORDER BY

« Scenario2: Join small tables stored in relational databases.

« JOIN
« JOIN and aggregate
« JOIN and aggregate with WHERE

« Scenario3: Join “one master table on relational database” with “large tables on
timeseries databases”.

 JOIN
* |JOIN and aggregate with GROUP BY
 JOIN with subquery

© 2020 Toshiba Corporation 32

Appendix

* Presto, Drill, Dremio don't have Multi-Tenant feature.

» PGSpider:
e SELECT sum(val) FROM TableA

« "table" is expanded automatically.

* Dremio: Use Virtual Dataset feature (Like view)

* CREATE VDS TableA(col1 ...) as SELECT * FROM ds1.TableA UNION
ALL ... SELECT * FROM ds4.TableA

o SELECT sum(val) FROM TableA
* Presto, Drill: Expand the table by using UNION ALL manually

* SELECT sum(val) FROM (SELECT * FROM ds1.TableA UNION ALL ...
SELECT * FROM ds4.TableA)

PGSpider, Dremio Presto, Drill

“ |
SELECT ... FROM TableA l l l l SELECT ... FROM (SELECT ...
E DS1 ﬁ DS2 E DS3 E DS4 ds1.TableA UNION ALL ...)

TableA TableA TableA TableA

© 2020 Toshiba Corporation 33

Scenariol: Node organization

* There are one cluster-engine.

[][] AWS instance

 There are max 4 data sources (TimescaleDB).

* 4 variations: Change the number of data sources 1, 2, 3, 4.

Measurement
program

Includes Coordinator
& Worker

Includes Coordinator
& Executor

TimescaleDB1
hist

TimescaleDB2

hist

/
TimescaleDB3
hist

TimescaleDB4

hist

© 2020 Toshiba Corporation

34

Scenariol: Evaluation data

« Each TimescaleDB has "hist" table storing senor data.

« 226 million records per node.

* 900 million records in total.

 Each record has "eid" indicating sensor ID.

* It is unique at each timestamp.
* Don't overlap ID between data sources.

u TimescaleDB4

\

TimescaleDB1

N 00:00:01

226 million 00:00:01
\2

Sensor (f/

eid1

1

1
5

TimescaleDB2

00:00:00 2

00:00:00
00:00:00 5_@&0M 6

Different

00:00:01
00:00:01

@
Y

eidZ

2
6

¢ .
eia6

TimescaleDB3

00:00:00
00:00:00

00:00:01
00:00:01

@
v
ei::IB

3

00:00:00 4
00:00:00 8

Same but time is different

w

7

G .
ei::l7

00:00:01 4
00:00:01 8

o o
VIRV

eia4 ei::l8

© 2020 Toshiba Corporation

35

Scenariol: WHERE (Hit 1 record) .~ PGSpider [Presto ¥ Drill ll Dremio

SELECT * FROM hist WHERE v=999 AND eid = 'sensor’ AND ts =
timestamp '2019-01-01 11:04:37°

* Drill becomes error if there are 2 or more nodes (Server crash).

6,000
5,000
4,000

3,000
2,000
1,000

< < <

0 - — I Z -l Z =1

1 2 3 4

The number of data sources

Time [msec]

All software are fast because of WHERE pushdown.

Especially PGSpider is less overhead.

© 2020 Toshiba Corporation 36

Scenariol: Aggregate | PGSpider [Presto [Drill [l Dremio

SELECT sum(v) FROM hist

e Drill becomes error if there are 2 or more nodes.

* Dremio is very slow if there are 2 or more nodes.
 Did not measure Dremio of case 3 and 4 nodes.

1,500,000
)
% 1,000,000
E
v
£ 500,000 See details in the next page.
= < <z <=3

Z
o allam =BSH sBS% w53

1 2 3 4
The number of data sources

© 2020 Toshiba Corporation 37

Scenariol: Aggregate .~ PGSpider [Presto ¥ Drill ll Dremio

SELECT sum(v) FROM hist

« TimescaleDB's performance (direct execution) is about
130,000 msec.

« PGSpider is faster because it pushdowns aggregate function.

 Presto does not pushdown.
« There are a lot of data transfer and high CPU/memory usage.

300,000
250,000
(@)

@ 200,000

&
L1 .
) >0,000 ———e - TimescaleDB
£ 100,000
|_
50,000 < W< Ml
0 > Z5 Z5

4
The number of data sources

PGSpider is better in terms of resource usage.

© 2020 Toshiba Corporation 38

S io1 . PGSpider [Presto [l Drill [l Dremio
cenario
* Trend is same.
SELECT eid, avg(v) FROM hist GROUP SELECT eid, avg(v) FROM hist GROUP
BY eid BY eid HAVING avg(v) > 280
1,600,000 1,600,000
1,400,000 1,400,000
1,200,000 1,200,000
g 1,000,000 & 1,000,000
£ 800,000 E. 800,000
Q (O]
£ 600,000 £ 600,000
= i~
400,000 I 400,000
200,000 o o 200,000 I I o o
0II§III§|§§|§§ N EN EHE I ENE
1 2 3 4 1 2 3 4
SELECT eid, avg(v) FROM hist GROUP SELECT eid, variance(v) FROM hist
BY eid ORDER BY eid GROUP BY eid ORDER BY eid
1,600,000 1,600,000
1,400,000 1,400,000
1,200,000 1,200,000
g 1,000,000 ©1,000,000
£ 800,000 % 800,000
Q
£ 600,000 £ 600,000
[=
400,000 400,000 I
200,000 o < 200,000 I I o o
< < < <
OIIEIILls%lz% o HEsH mhsh MisE DAss
1 2 3 4 1 2 3 4
© 2020 Toshiba Corporation 39

Scenario3: Node organization

| AWS instance

* There are one relational database (PostgreSQL).

* There are max 3 timeseries database (TimescaleDB).

« 3 variations: Change the number of timeseries database 1, 2, 3.

Measurement
program

Dremio

PostgreSQL

signal

TimescaleDB2

hist

TimescaleDB3
hist

TimescaleDB4

hist

signal X

hist
TimescaleDB1.hist
TimescaleDB2.hist

TimescaleDB3.hist

4

© 2020 Toshiba Corporation

40

Scenario3: Evaluation data

« Each TimescaleDB has "hist" table storing senor data.

« Same as Scenariol.

 PostgreSQL has “signal” table.

 Store sensor names corresponding to "eid".
* There are 100,000 records.

100,000

« 226 million records per node. About 700 million records in total.

TimescaleDB4

PostgreSQL TimescaleDB2 TimescaleDB3
eid name NMlen [cid | . [lltn eid .. Ml eid ..
1 XXXXXX 00:00:00 | 1 00:00:00 | 2 00:00:00 | 3
2 YYYYYy 00:00:00 | 5 00:00:00 | 6 00:00:00 | 7
100000 00:00:01 1 00:00:01 2 00:00:01 3
00:00:01 5 00:00:01 6 00:00:01 | 7
eid1 eid5 eid2 eid6 eid3 eid7

-
G .

226 million

© 2020 Toshiba Corporation 41

Scenario3: large data INNER JOIN 1= pcspider Ml Presto Il Drill Bl Dremio

SELECT name, avg(v) FROM data INNER JOIN signal ON
data.eid = signal.eid GROUP BY name

e Drill becomes error.

« Dremio is very slow if there are 2 or more nodes.
Did not measure Dremio of case 3 and 4 nodes.
« PGSpider is also very slow, no response for more than 1 hour.

© 2020 Toshiba Corporation 42

Scenario3: large data INNER JOIN 1= pcspider Ml Presto Il Drill Bl Dremio

SELECT name, avg(v) FROM data INNER JOIN signal ON
data.eid = signal.eid GROUP BY name

e Drill becomes error.

« Dremio is very slow if there are 2 or more nodes.
» Did not measure Dremio of case 3 and 4 nodes.
« PGSpider is also very slow, no response for more than 1 hour.

Reason why PGSPider is slow: %6000
1,400,000

« Use merge join algorithm. 1,200,000

 Retrieve all record. Y 1,000,000
---> Presto also does.

800,000
* Sort records. = 600,000
N . 400,000
---> This tales a long time.
200,000 < < $§
0 < z Z>
1 2 3

The number of data sources

Time [m

© 2020 Toshiba Corporation

43

Scenario3: large data INNER JOIN 1= pcspider Ml Presto Il Drill Bl Dremio

 Configured to use hash join on PGSpider.
 "SET enable_mergejoin TO off"

* Presto is affected less by data size than PGSpider.

e Gradient of line is smaller.

1,600,000
1,400,000
1,200,000
@ 1,000,000
800,000
600,000
400,000
200,000
0

Time [m

1 2 3
The number of data sources

© 2020 Toshiba Corporation 44

Scenario3: Analysis

* This scenario requires both software to retrieve all

data.

* Presto might be able to do join operation in parallel.

* PGSpider can do in parallel only data retrieval.

join operation

o

ez
PGSpider -) Joln operation
N

PostgreSQL

signal

i

’

\

\

TimescaleDB2
hist

TimescaleDB3 TimescaleDB4
hist hist

© 2020 Toshiba Corporation 45

Result summary

__________|PGSpider |Presto_|Drill _|Dremio_

Scenariol: Search for big tables stored in timeseries databases.
LIMIT (Hit 1, 1000, 10000 records)

ORDER BY with LIMIT (Hit 1 record) ® ---
WHERE (Hit 1 record) e o Pl o

Aggregate ~ NA O UNK
Aggregate with GROUP BY --
Aggregate with GROUP BY and HAVING ~ N/A UNK
Aggregate with GROUP BY and ORDER BY ~ N/A UNK

Scenario2: Join small tables stored in relational databases.
JOIN

JOIN and Aggregate

JOIN and aggregate with WHERE
Scenario3: JOIN large tables.

JOIN with WHERE

JOIN and aggregate with GROUP BY
JOIN with subquery

OOOO

,\Z>II GICIE
M ---

M ---

*1 @ if use hash jOin. © 2020 Toshiba Corporation 46

Complement: Impact of cache

We have measured a time of 1st query execution so far.
 Systems (OS and software) have no cache.

Result of 2nd time query execution.
* Scenario2: SELECT sum(v) FROM hist
* 1 data source.

300000 st
250000 i Hand
200000
150000 -
100000
50000

O S S —
PGSpider Presto Drill Dremio

Cache has little effect.

© 2020 Toshiba Corporation 47

Conclusion

» We proposed PGSpider for lloT system.
 Developed by modifying PostgreSQL.

« PGSpider can retrieve data from a lot of nodes.

* Easy to access tables by one SQL with Multi-Tenant
feature.

* Retrieve data in parallel.
 Improve performance by controlling pushdown.
* Ignore dead node by checking node existence.

« Measured time compared with competitive software.

* PGSpider is less overhead.

* Needs to improve data joining operation for large
tables.

© 2020 Toshiba Corporation 48

TOSHIBA

Thank you!

Questions?

PGSPider source code:
https://github.com/pgspider/pgspider

Email:
taiga.katayama@toshiba.co.jp

TOSHIBA

