"Probabilistic” Data
Structures vs. PostgreSQL

(and similar stuff)

FOSDEM PgDay - January 31, 2020

Tomas Vondra
tomas.vondra@2ndquadrant.com
tv@fuzzy.cz | @fuzzycz

mailto:tomas.vondra@2ndquadrant.com
mailto:tv@fuzzy.cz

HyperLoglLog and t-digest

Probabilistic data structures ... use hash functions to
randomize and compactly represent a set of items.

These algorithms use much less memory and have
constant query time ... and can be easily parallelized.

https://dzone.com/articles/introduction-probabilistic-0

https://dzone.com/articles/introduction-probabilistic-0

https://en.wikipedia.org/wiki/Cateqory:Probabilistic data structures

e Bloom Filter (set membership)
e HyperLoglLog (count distinct)
e Count-Min Sketch (frequency table)
e MinHash (set similarity)

o

e ...random trees, heaps, ...

https://en.wikipedia.org/wiki/Category:Probabilistic_data_structures

https://en.wikipedia.org/wiki/Cateqory:Probabilistic data structures

e Bloom Filter (set membership)
e HyperLoglLog (count distinct)
e Count-Min Sketch (frequency table)
e MinHash (set similarity)

o

e ...random trees, heaps, ...

https://en.wikipedia.org/wiki/Category:Probabilistic_data_structures

access_log

CREATE TABLE access log (

req date TIMESTAMPTZ,
user 1id INTEGER,
response time DOUBLE PRECISION,

) ;

CREATE TABLE access log (req date timestamptz, user id int,
response time double precision);

INSERT INTO access log SELECT i, 1000000 * random(), 1000 *
random() from generate series('2019-01-01'::timestamptz,
'2020-02-01"::timestamptz, 'l second'::interval) s (i)

SELECT COUNT(DISTINCT user_id)
FROM access_log

COUNT(DISTINCT user id)

e has to deduplicate data

e needs a lot of memory / disk space
e ...solit'sslow

e difficult to precalculate

e difficult to compute incrementally

e difficult to parallelize

HyperLoglog

HyperLoglLog

e when it's enough to have (accurate) estimate

SELECT COUNT(DISTINCT user_id) FROM access_log;

e we'll observe number of zeroes at the beginning of the hash value
O TXXXXXXXX => 1/2

0 BTIxXXXXXXX =>1/4

O

o 0000001xx =>1/128

e Maximum number of zeroes we've seen is 6. What's the cardinality?

HyperLoglLog

h1(value)

prefix zeroes in h2(value)

HyperLoglLog

0 256

5|1 3|4 |7 5|6 .. HLL .| 6|1 4|5 8|5 |4

harmonic mean + correction

https://qithub.com/citusdata/postgresqgl-hll

https://github.com/citusdata/postgresql-hll

Alternative to COUNT(DISTINCT user _id)

—— 1nstall the extension
CREATE EXTENSION hll;

—-— generate HLL counter from user 1d values
SELECT hll add agg(hll hash integer (user id))
FROM access 1log;

-— estimate the cardinality of user id values
SELECT #hll add agg(hll hash integer (user id))
FROM access 1og;

Rollup (pre-calculation)

—-— create a rollup table
CREATE TABLE access log daily (req day date,
req users hll);

-— pre-calculate daily summaries
INSERT INTO access log daily
SELECT
date trunc('day', req date),
hll add agg(hll hash integer (user id))
FROM access log
GROUP BY 1;

Rollup (pre-calculation)

—-— use the rollup to summarize range
SELECT #hll union agg(reg users)

FROM access log dailly
WHERE req day BETWEEN '2019-10-01' AND
'2019-10-08";

HyperLoglLog

e 2007 (evolution from ~1990)
e just an estimate, not an exact cardinality
o but you can compute the maximum error
e trade-off between size and accuracy
o size grows very slowly (with increasing accuracy / number of values)
o 6kB more than enough for 1B values with 1% accuracy (1.5kB - 2% etc.)
® supports
o precalculation (rollup)
o incremental updates

O

t-digest

percentile _cont / percentile disc

SELECT
percentile_cont(0.95)
WITHIN GROUP (ORDER BY response_time)
FROM access_log

percentile _cont / percentile disc

SELECT
percentile cont (ARRAY[0.95, 0.99])
WITHIN GROUP (ORDER BY response time)
FROM access log

percentile _cont / percentile disc

e accurate results
e has to store and sort all the data
e difficult to parallelize

e can't be precalculated

t-digest

e published in 2013 by Ted Dunning
e approximation of CDF (cumulative distribution function)
e essentially a histogram
o represented by centroids, i.e. each bin is represented by
[mean, count]
o requires data types with ordering and mean
e intended for stream processing
o but hey, each aggregate is processing a stream of data

e higher accuracy on the tails (close to 0.0 and 1.0)

1000

1000

80%

1000

95%

1000

95%

1000

99%

1000

https://qithub.com/tvondra/tdigest

https://github.com/tvondra/tdigest

Trivial example

SELECT
percentile cont (0.95)
WITHIN GROUP (ORDER BY response time)
FROM access 1log

SELECT

tdigest percentile (response time, 100, 0.95)
FROM access log

Precalculation

CREATE TABLE precalc digests (
req day date,
req durations tdigest

) ;

INSERT INTO precalc digests
SELECT
date trunc('day', req date),
tdigest (response time, 100)
FROM access log GROUP BY 1;

t-digest

e modus operandi similar to HyperLoglLog
o approximation by simpler / smaller data structure
o incremental updates
o possibility to precalculate + rollup
e result depends on order of input values
o affects parallel queries
e no formal accuracy limits
o better accuracy on tails

o worse accuracty close to 0.5 (median)

