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HyperLogLog and t-digest



Probabilistic data structures ... use hash functions to
randomize and compactly represent a set of items.

These algorithms use much less memory and have
constant query time … and can be easily parallelized.

https://dzone.com/articles/introduction-probabilistic-0 

https://dzone.com/articles/introduction-probabilistic-0


https://en.wikipedia.org/wiki/Category:Probabilistic_data_structures 

● Bloom Filter (set membership)

● HyperLogLog (count distinct)

● Count-Min Sketch (frequency table)

● MinHash (set similarity)

● … 

● … random trees, heaps, ...

https://en.wikipedia.org/wiki/Category:Probabilistic_data_structures
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access_log

CREATE TABLE access_log (
    ...
    req_date        TIMESTAMPTZ,
    user_id         INTEGER,
    response_time   DOUBLE PRECISION,
    ...
);

CREATE TABLE access_log (req_date timestamptz, user_id int, 
response_time double precision);

INSERT INTO access_log SELECT i, 1000000 * random(), 1000 * 
random() from generate_series('2019-01-01'::timestamptz, 
'2020-02-01'::timestamptz, '1 second'::interval) s(i);



SELECT COUNT(DISTINCT user_id)
FROM access_log



COUNT(DISTINCT user_id)

● has to deduplicate data

● needs a lot of memory / disk space

● … so it's slow

● difficult to precalculate

● difficult to compute incrementally

● difficult to parallelize



HyperLogLog



● when it's enough to have (accurate) estimate

SELECT COUNT(DISTINCT user_id) FROM access_log;

● we'll observe number of zeroes at the beginning of the hash value

○ 1xxxxxxxx => 1/2

○ 01xxxxxxx => 1/4

○ …

○ 0000001xx => 1/128

● Maximum number of zeroes we've seen is 6. What's the cardinality?

HyperLogLog



HyperLogLog

value

HLL7

h1(value)

prefix zeroes in h2(value)

0 256



HyperLogLog

HLL7

0 256

4 5 635 85 5 446......

harmonic mean + correction



https://github.com/citusdata/postgresql-hll 
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Alternative to COUNT(DISTINCT user_id)

-- install the extension
CREATE EXTENSION hll;

-- generate HLL counter from user_id values
SELECT hll_add_agg(hll_hash_integer(user_id))
  FROM access_log;

-- estimate the cardinality of user_id values
SELECT #hll_add_agg(hll_hash_integer(user_id))
  FROM access_log;



Rollup (pre-calculation)

-- create a rollup table
CREATE TABLE access_log_daily (req_day date, 
req_users hll);

-- pre-calculate daily summaries
INSERT INTO access_log_daily
SELECT
  date_trunc('day', req_date),
  hll_add_agg(hll_hash_integer(user_id))
FROM access_log
GROUP BY 1;



Rollup (pre-calculation)

-- use the rollup to summarize range
SELECT #hll_union_agg(req_users)
  FROM access_log_daily
 WHERE req_day BETWEEN '2019-10-01' AND 
'2019-10-08';



HyperLogLog

● 2007 (evolution from ~1990)

● just an estimate, not an exact cardinality

○ but you can compute the maximum error

● trade-off between size and accuracy

○ size grows very slowly (with increasing accuracy / number of values)

○ 6kB more than enough for 1B values with 1% accuracy (1.5kB - 2% etc.)

● supports

○ precalculation (rollup)

○ incremental updates

○ ...



t-digest



percentile_cont / percentile_disc

SELECT
percentile_cont(0.95)

WITHIN GROUP (ORDER BY response_time)
FROM access_log



percentile_cont / percentile_disc

SELECT
percentile_cont(ARRAY[0.95, 0.99])

WITHIN GROUP (ORDER BY response_time)
FROM access_log



percentile_cont / percentile_disc

● accurate results

● has to store and sort all the data

● difficult to parallelize

● can't be precalculated

:-(



t-digest

● published in 2013 by Ted Dunning

● approximation of CDF (cumulative distribution function)

● essentially a histogram

○ represented by centroids, i.e. each bin is represented by 

[mean, count]

○ requires data types with ordering and mean

● intended for stream processing

○ but hey, each aggregate is processing a stream of data

● higher accuracy on the tails (close to 0.0 and 1.0)
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https://github.com/tvondra/tdigest 

https://github.com/tvondra/tdigest


Trivial example

SELECT
percentile_cont(0.95)

     WITHIN GROUP (ORDER BY response_time)
FROM access_log

SELECT
tdigest_percentile(response_time, 100, 0.95)

FROM access_log



Precalculation

CREATE TABLE precalc_digests (
req_day date,
req_durations tdigest

);

INSERT INTO precalc_digests
SELECT

date_trunc('day', req_date),
tdigest(response_time, 100)

FROM access_log GROUP BY 1;



t-digest

● modus operandi similar to HyperLogLog

○ approximation by simpler / smaller data structure

○ incremental updates

○ possibility to precalculate + rollup

● result depends on order of input values

○ affects parallel queries

● no formal accuracy limits

○ better accuracy on tails

○ worse accuracty close to 0.5 (median)



?


