
(and similar stuff)
FOSDEM PgDay - January 31, 2020

"Probabilistic" Data
Structures vs. PostgreSQL

Tomas Vondra
tomas.vondra@2ndquadrant.com

tv@fuzzy.cz / @fuzzycz

mailto:tomas.vondra@2ndquadrant.com
mailto:tv@fuzzy.cz

HyperLogLog and t-digest

Probabilistic data structures ... use hash functions to
randomize and compactly represent a set of items.

These algorithms use much less memory and have
constant query time … and can be easily parallelized.

https://dzone.com/articles/introduction-probabilistic-0

https://dzone.com/articles/introduction-probabilistic-0

https://en.wikipedia.org/wiki/Category:Probabilistic_data_structures

● Bloom Filter (set membership)

● HyperLogLog (count distinct)

● Count-Min Sketch (frequency table)

● MinHash (set similarity)

● …

● … random trees, heaps, ...

https://en.wikipedia.org/wiki/Category:Probabilistic_data_structures

https://en.wikipedia.org/wiki/Category:Probabilistic_data_structures

● Bloom Filter (set membership)

● HyperLogLog (count distinct)

● Count-Min Sketch (frequency table)

● MinHash (set similarity)

● …

● … random trees, heaps, ...

https://en.wikipedia.org/wiki/Category:Probabilistic_data_structures

access_log

CREATE TABLE access_log (
 ...
 req_date TIMESTAMPTZ,
 user_id INTEGER,
 response_time DOUBLE PRECISION,
 ...
);

CREATE TABLE access_log (req_date timestamptz, user_id int,
response_time double precision);

INSERT INTO access_log SELECT i, 1000000 * random(), 1000 *
random() from generate_series('2019-01-01'::timestamptz,
'2020-02-01'::timestamptz, '1 second'::interval) s(i);

SELECT COUNT(DISTINCT user_id)
FROM access_log

COUNT(DISTINCT user_id)

● has to deduplicate data

● needs a lot of memory / disk space

● … so it's slow

● difficult to precalculate

● difficult to compute incrementally

● difficult to parallelize

HyperLogLog

● when it's enough to have (accurate) estimate

SELECT COUNT(DISTINCT user_id) FROM access_log;

● we'll observe number of zeroes at the beginning of the hash value

○ 1xxxxxxxx => 1/2

○ 01xxxxxxx => 1/4

○ …

○ 0000001xx => 1/128

● Maximum number of zeroes we've seen is 6. What's the cardinality?

HyperLogLog

HyperLogLog

value

HLL7

h1(value)

prefix zeroes in h2(value)

0 256

HyperLogLog

HLL7

0 256

4 5 635 85 5 446......

harmonic mean + correction

https://github.com/citusdata/postgresql-hll

https://github.com/citusdata/postgresql-hll

Alternative to COUNT(DISTINCT user_id)

-- install the extension
CREATE EXTENSION hll;

-- generate HLL counter from user_id values
SELECT hll_add_agg(hll_hash_integer(user_id))
 FROM access_log;

-- estimate the cardinality of user_id values
SELECT #hll_add_agg(hll_hash_integer(user_id))
 FROM access_log;

Rollup (pre-calculation)

-- create a rollup table
CREATE TABLE access_log_daily (req_day date,
req_users hll);

-- pre-calculate daily summaries
INSERT INTO access_log_daily
SELECT
 date_trunc('day', req_date),
 hll_add_agg(hll_hash_integer(user_id))
FROM access_log
GROUP BY 1;

Rollup (pre-calculation)

-- use the rollup to summarize range
SELECT #hll_union_agg(req_users)
 FROM access_log_daily
 WHERE req_day BETWEEN '2019-10-01' AND
'2019-10-08';

HyperLogLog

● 2007 (evolution from ~1990)

● just an estimate, not an exact cardinality

○ but you can compute the maximum error

● trade-off between size and accuracy

○ size grows very slowly (with increasing accuracy / number of values)

○ 6kB more than enough for 1B values with 1% accuracy (1.5kB - 2% etc.)

● supports

○ precalculation (rollup)

○ incremental updates

○ ...

t-digest

percentile_cont / percentile_disc

SELECT
percentile_cont(0.95)

WITHIN GROUP (ORDER BY response_time)
FROM access_log

percentile_cont / percentile_disc

SELECT
percentile_cont(ARRAY[0.95, 0.99])

WITHIN GROUP (ORDER BY response_time)
FROM access_log

percentile_cont / percentile_disc

● accurate results

● has to store and sort all the data

● difficult to parallelize

● can't be precalculated

:-(

t-digest

● published in 2013 by Ted Dunning

● approximation of CDF (cumulative distribution function)

● essentially a histogram

○ represented by centroids, i.e. each bin is represented by

[mean, count]

○ requires data types with ordering and mean

● intended for stream processing

○ but hey, each aggregate is processing a stream of data

● higher accuracy on the tails (close to 0.0 and 1.0)

0 1000

0 1000

0 1000

80%

0 1000

95%

0 1000

95%

0 1000

99%

0 1000

0 1000

https://github.com/tvondra/tdigest

https://github.com/tvondra/tdigest

Trivial example

SELECT
percentile_cont(0.95)

 WITHIN GROUP (ORDER BY response_time)
FROM access_log

SELECT
tdigest_percentile(response_time, 100, 0.95)

FROM access_log

Precalculation

CREATE TABLE precalc_digests (
req_day date,
req_durations tdigest

);

INSERT INTO precalc_digests
SELECT

date_trunc('day', req_date),
tdigest(response_time, 100)

FROM access_log GROUP BY 1;

t-digest

● modus operandi similar to HyperLogLog

○ approximation by simpler / smaller data structure

○ incremental updates

○ possibility to precalculate + rollup

● result depends on order of input values

○ affects parallel queries

● no formal accuracy limits

○ better accuracy on tails

○ worse accuracty close to 0.5 (median)

?

