
2022 Copyright © EnterpriseDB Corporation All Rights Reserved

Don’t Do This

Jimmy Angelakos
Senior Solutions Architect

FOSDEM 2023-02-05
PostgreSQL Devroom

2022 Copyright © EnterpriseDB Corporation All Rights Reserved2022 Copyright © EnterpriseDB Corporation All Rights Reserved

What is this talk?
• Not all-inclusive

• There is literally nothing you
cannot mess up

• Misconceptions

• Confusing things

• Common but impactful
mistakes

2022 Copyright © EnterpriseDB Corporation All Rights Reserved2022 Copyright © EnterpriseDB Corporation All Rights Reserved

We’ll be looking at
• Bad SQL

• Improper data types

• Improper feature usage

• Performance considerations

• Security considerations

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

Bad SQL

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

NOT IN (i)

5

Doesn’t work the way you expect!

• As in: SELECT WHERE NOT IN (SELECT)… … …
• SQL is not Python or Ruby!

– SELECT a FROM tab1 WHERE a NOT IN (1, null); returns NO rows!
– SELECT a FROM tab1 WHERE a NOT IN (SELECT b FROM tab2);

same, if any b is NULL
• Why is this bad even if no NULLs?

– Query planning / optimization
– Subplan instead of anti-join

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

NOT IN (ii)

6

What to do instead?

• Anti-join

• SELECT col
FROM tab1
WHERE NOT EXISTS
 (SELECT col
 FROM tab2
 WHERE tab1.col = tab2.col);

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

NOT IN (iii)

7

Or:

• SELECT col
FROM tab1
LEFT JOIN tab2 USING (col)
WHERE tab2.col IS NULL;

• NOT IN is OK, if you know there are no NULLs

– e.g. excluding constants: NOT IN (1,3,5,7,11)

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

BETWEEN (i)

8

Especially with TIMESTAMPs

• BETWEEN (1 AND 100) is inclusive (closed interval)

• When is this bad?

SELECT sum(amount)
FROM transactions
WHERE transaction_timestamp
BETWEEN ('2023-02-05 00:00' AND '2023-02-06 00:00');

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

BETWEEN (ii)

9

Be explicit instead, and use:

SELECT sum(amount)
FROM transactions
WHERE transaction_timestamp >= '2023-02-05 00:00'
AND transaction_timestamp < '2023-02-06 00:00';

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Using upper case in identifiers

10

For table or column names

• Postgres makes everything lower case unless you double quote it

• CREATE TABLE Plerp ();…
CREATE TABLE "Quux" ();…

– Creates a table named plerp and one named Quux
– TABLE Plerp; works – TABLE "Plerp"; fails
– TABLE Quux; fails – TABLE "Quux"; works
– Same with column names

• For pretty column names: SELECT col FROM plerp AS "Pretty Name";

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

Improper
data types

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

TIMESTAMP (WITHOUT TIME ZONE)

12

a.k.a. naïve timestamps

• Stores a date and time with no time zone information

– Arithmetic between timestamps entered at different time zones is
meaningless and gives wrong results

• TIMESTAMPTZ (TIMESTAMP WITH TIME ZONE) stores a moment in time

– Arithmetic works correctly
– Displays in your time zone, but can display it AT TIME ZONE

• Don’t use TIMESTAMP to store UTC because the DB doesn’t know it’s UTC

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

TIMETZ

13

Or TIME WITH TIME ZONE has questionable usefulness

• Only there for SQL compliance

– Time zones in the real world have little meaning without dates
– Offset can vary with Daylight Savings
– Not possible to do arithmetic across DST boundaries

• Use TIMESTAMPTZ instead

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

CURRENT_TIME

14

Is TIMETZ. Instead use:

• CURRENT_TIMESTAMP or now() for a TIMESTAMPTZ

• LOCALTIMESTAMP for a TIMESTAMP

• CURRENT_DATE for a DATE

• LOCALTIME for a TIME

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

CHAR(n) / VARCHAR(n)

15

Padded with whitespace up to length n

• Padding spaces are ignored when comparing

– But not for pattern matching with LIKE & regular expressions!

• Actually not stored as fixed-width field!

– Can waste space storing irrelevant spaces
– Performance-wise, spend extra time stripping spaces
– Index created for CHAR(n) may not work with a TEXT parameter

• company_name VARCHAR(50) → Peterson's and Sons and Friends Bits & Parts Limited

• To restrict length, just enforce CHECK constraint

• Bottom line: just use TEXT (VARCHAR)

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

MONEY

16

Get away 🎶

• Fixed-point

– Doesn’t handle fractions of a cent, etc. – rounding may be off!

• Doesn’t store currency type, assumes server LC_MONETARY

• Accepts garbage input:

SELECT ',123,456,,7,8.1,0,9'::MONEY;
 money

 £12,345,678.11
(1 row)

• Just use NUMERIC and store currency in another column

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

SERIAL

17

Used to be useful shorthand but now more trouble than it’s worth

• Non SQL Standard

• Permissions for sequence created by SERIAL need to be managed separately from the
table

• CREATE TABLE LIKE… will use the same sequence!

• Use identity columns instead:

CREATE TABLE tab (id BIGINT GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
content TEXT);

• With an identity column, you don’t need to know the name of the sequence:
ALTER TABLE tab ALTER COLUMN id RESTART WITH 1000;

• BUT: if application depends on a serial sequence with no gaps (e.g. for receipt numbers),
generate that in the application

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

Improper
feature
usage

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

SQL_ASCII

19

Is not a database encoding

• No encoding conversion or validation!

– Byte values 0-127 interpreted as ASCII
– Byte values 128-255 uninterpreted

• Setting behaves differently from other character sets

• Can end up storing a mixture of encodings
– And no way to recover original strings

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

CREATE RULE

20

RULEs are not the same as TRIGGERs

• Rules don’t simply apply conditional logic

– They rewrite queries to modify or add extra queries
– All non-trivial rules will probably have unintended side-effects
– Non SQL Standard

• If you are not creating writable VIEWs, use TRIGGERs instead

• Look for Depesz’s exhaustive blog post on rules:
https://www.depesz.com/2010/06/15/to-rule-or-not-to-rule-that-is-the-question

https://www.depesz.com/2010/06/15/to-rule-or-not-to-rule-that-is-the-question

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

CREATE TABLE () INHERITS … … (i)

21

Table inheritance

• Seemed like a good idea before ORMs…
• e.g. CREATE TABLE events (id BIGINT, many columns);… …

 CREATE TABLE meetings (scheduled_time TIMESTAMPTZ)
 INHERITS events;

• Was used to implement partitioning (< PG 10)

• Incompatible with declarative partitioning (>= PG 10):
– One cannot inherit from a partitioned table
– One cannot add inheritance to a partitioned table

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

CREATE TABLE () INHERITS … … (ii)

22

How to undo table inheritance

• You can replace table inheritance with foreign key relations

• Create a new table to hold the data, and add the FK column:

CREATE TABLE new_meetings LIKE meetings;
ALTER TABLE new_meetings ADD item_id BIGINT;

• Copy data from old table into new one (may take a long time):

INSERT INTO new_meetings
SELECT *, id FROM meetings;

• Create required constraints, indexes, triggers etc. for new_meetings

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

CREATE TABLE () INHERITS … … (iii)

23

How to undo table inheritance (continued)

• Very dirty hack (if your table is huge) - create the FK but do not validate it now
to avoid the full table scan:

ALTER TABLE new_meetings
CONSTRAINT event_id_fk
FOREIGN KEY (event_id)
REFERENCES events (id)
NOT VALID;

• If doing this on a live system, create a trigger to replicate changes coming into
meetings also into new_meetings

• Normally one should not touch pg_catalog directly, but we can
UPDATE pg_constraint SET convalidated = true WHERE conname = 'event_id_fk';
as we are confident that data in FK column is valid (as exact copy of the original table)

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

CREATE TABLE () INHERITS … … (iv)

24

How to undo table inheritance (continued)

• Inside a transaction, perform all the DDL at once:

DO $$
BEGIN
 ALTER TABLE meetings RENAME TO old_meetings;
 ALTER TABLE new_meetings RENAME TO meetings;
 DROP TABLE old_meetings;
 -- IMPORTANT: Create trigger to INSERT/UPDATE/DELETE items in
 -- events as they get changed in meetings - it's easy as now
 -- we have the FK.
 COMMIT;
END $$ LANGUAGE plpgsql;

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Partitioning by multiple keys (i)

25

Is not partitioning on multiple levels

• Be careful!

• CREATE TABLE transactions (, location_code … TEXT, tstamp TIMESTAMPTZ)
PARTITION BY RANGE (tstamp, location_code);

• CREATE TABLE transactions_2023_02_a
PARTITION OF transactions
FOR VALUES FROM ('2023-02-01', 'AAA') TO ('2023-03-01', 'BAA');

• CREATE TABLE transactions_2023_02_b
PARTITION OF transactions
FOR VALUES FROM ('2023-02-01', 'BAA') TO ('2023-03-01', 'BZZ');

ERROR: partition "transactions_2023_02_b" would overlap partition
"transactions_2023_02_a"

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Partitioning by multiple keys (ii)

26

Subpartitioning is what you actually need

• CREATE TABLE transactions (, location_code … TEXT, tstamp TIMESTAMPTZ)
PARTITION BY RANGE (tstamp);

• CREATE TABLE transactions_2023_02
PARTITION OF transactions
FOR VALUES FROM ('2023-02-01') TO ('2023-03-01')
PARTITION BY HASH (location_code);

• CREATE TABLE transactions_2023_02_p1
PARTITION OF transactions_2023_02
FOR VALUES WITH (MODULUS 4, REMAINDER 0);

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

Performance
considerations

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Number of connections (i)

28

Don’t overload your server for no reason

• max_connections = 5000 🤘

• Every client connection spawns a separate backend process

– IPC via semaphores & shared memory
– Risk: CPU context switching

• Accessing the same objects from multiple connections may incur many
Lightweight Locks (LWLocks or “latches”)

– Lock becomes heavily contended, lots of lockers slow each other down
– You may be making your data hotter for no reason
– No queuing, more or less random

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Number of connections (ii)

29

Mitigation strategy

• Pre-PG 13: Snapshot contention

– Each transaction has an MVCC snapshot – even if idle!

• Contention often caused by too much concurrency

– Insert a connection pooler (e.g. PgBouncer) between application and DB
– Allow fewer connections into the DB, make the rest queue for their turn
– “Throttle” or introduce latency on the application side, to save your

server performance
● Sounds counter-intuitive!
● Doesn’t necessarily slow anything down – queries may execute

faster!

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

High transaction rate (i)

30

Just because you can, doesn’t mean you should

• Postgres assigns an identifier to each transaction

– Unsigned 32-bit int (4.2B values)
– Circular space, with a visibility horizon

• XID wraparound: you try to read a very old tuple that is > 2.1B XIDs in the past

• Very heavy OLTP workloads can go through 2.1B transactions in a short time

– For you, that’s the future! (invisible)
– Freezing: Flag tuple as “frozen” which is known to always be in the past

• Need to make sure FREEZE happens before XID wraparound

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

High transaction rate (ii)

31

What can you do?

• Can batching help?

– Does application really need to commit everything atomically?
– Batch size 1000 will have 1/1000th the burn rate

• Increase effectiveness of autovacuum

– More efficient FREEZE

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Turning off autovacuum (i)

32

a.k.a. the MVCC maintenance operation. Yeah, don’t.

• Removes dead tuples, freezes tuples (among other things)

• Has overhead

– Scans tables & indexes
– Needs, obtains, and waits for locks
– Has limited capacity by default

• People are concerned about overhead
– Alternative is worse! You can’t avoid VACUUM in Postgres (yet).
– You can outrun it (and then you’ll need VACUUM FULL)

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Turning off autovacuum (ii)

33

For most production workloads, defaults are too low

• Make it work harder to avoid problems

• Increase potency via:

– maintenance_work_mem (1GB is good)
– autovacuum_max_workers
– autovacuum_vacuum_cost_delay / autovacuum_vacuum_cost_limit

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Explicit locking (i)

34

a.k.a. heavyweight locks

• Table-level (e.g. SHARE) or row-level (e.g. FOR UPDATE)

• Conflict with other lock modes (e.g. ACCESS EXCLUSIVE with ROW
EXCLUSIVE)

• Block read/write access totally leading to waits

• Disastrous for performance

– Unless your application is exquisitely crafted
– Hint: it isn’t

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Explicit locking (ii)

35

Lock contention: waiting for explicit locks

• Avoid explicit locking!

• Use SSI (Serializable Snapshot Isolation, SERIALIZABLE isolation level)

• Make application tolerant

– Allow it to fail and retry

• Slightly reduced concurrency, but:
– No blocking, no explicit locks needed (SIReadLocks, rw-conflicts)
– Best performance choice for some application types

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

Security
considerations

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

psql --W or --password

37

Request password before attempting connection

• It will ask for a password even if the server doesn’t require one

• Unnecessary: psql will always ask for a password if required by server

• Insecure: You may think you’re logging in with a password
– But the server may be in trust mode and letting you in anyhow
– Also, you may be entering the wrong password and still getting in
– From a different client, you may get a surprise!

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Come In WE’RE OPEN

listen_addresses = "*"

38

Listening for connections from clients

• There’s a reason the default is
'localhost' (only TCP/IP loopback)

• Make sure you only enable the
interfaces and networks which you
actually want to have access to the
database server

• e.g. Internet connection on one network
& private network on another interface

• Don’t advertise your presence:
3600000 MySQL/MariaDB servers
(port 3306) found exposed on the
Internet in May 2022

“We’re open” by Enrico Donelli is licensed under CC BY-ND 2.0.

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

No door

pg_hba.conf → trust

39

Host-Based Authentication

• Called that for a reason, i.e. configuring
with host … like:

host mydb myuser 10.10.10.10/32 md5

• trust with host(ssl) is a Very Bad Idea™

– Even for local e.g. improper user
can connect to the DB

– Postgres might be fine, but
other software on the same
server could be compromised

• Default to giving access only where
strictly necessary (better safe...)

“Broken door” by Arno Volkers is licensed under CC BY-NC-ND 2.0.

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Database owned by superuser

40

Do you really need to?

• Use superuser only for management of global objects

– Such as users
– Good security practice

• Superuser bypasses a lot of checks

• (Bad) code that’s normally harmless could be exploited in harmful way
with superuser access

• Try to restrict database ownership to standard users

2023 Copyright © EnterpriseDB Corporation All Rights Reserved

Find me onFind me on Mastodon: @vyruss@fosstodon.orgMastodon: @vyruss@fosstodon.org

Photo: “The Devil’s Beef Tub”, ScotlandPhoto: “The Devil’s Beef Tub”, Scotland

Thank you!Thank you!

