
Multi-tenant database systems :
the good, the bad, the ugly



Who are you listening to?

● Pierre Ducroquet (French, sorry for your ears)
● Developer turned PostgreSQL DBA since about 10 years now

● Working at Entr’ouvert, small french (mostly-)SaaS company

● Sometimes I wish I had not seen things



What is a multi-tenant system

● Wikipedia says:

Software multitenancy is a software architecture in which a single 
instance of software runs on a server and serves multiple tenants. 
A tenant is a group of users who share a common access with 
specific privileges to the software instance. 



What is a multi-tenant system

● Theory 

Tenant 1

A

B

C

D

E

Tenant 2

A

B

C

D

E



What is a multi-tenant system

● Theory vs reality…

Tenant 1

A

B

C
D
E

Tenant 2

A

B C

D

E

Tenant 3

A

B

C

D

E



How to implement it in the database?

● PostgreSQL extensions like Citus
● One deployment per tenant
● Spread a tenant_id column everywhere
● One database per tenant
● One schema per tenant



PostgreSQL extensions

● I only saw the Citus extension
● Never used it myself, so I can’t say much here that would be 

relevant
● I quote them, « Must design application for Citus »
● Most systems I saw evolved into multi-tenant later, sorry Citus…



One deployment per tenant

● So you’ve got this big furnace and throw sysadmin/devops/$ into it
● This is not a DBA job, this is an automation job
● There is a cloud infra devroom on FOSDEM tomorrow for this kind 

of talk



tenant_id column

● Security (do you trust your developers?)
● Statistics and optimizer (correlations, correlations everywhere)
● Indexing is trickier (Should I add tenant_id in each index? Should 

I add tenant-specific indexes?)
● You need want PoWA
● Why is that query slow occasionnaly only ?
● Most tools work fine



And now for something completely different



Row Level Security for tenants ?

● Perfect exemple of a false good idea
● It works, but it’s not designed for this
● RLS aims for high, strict security standards, not your usual 

environment
● You’ll have to tag everything as leakproof...



One database per tenant

● Security breachs must happen in the application before the DB 
starts being used, much harder

● No indexing drama (kind of)
● Tools will work fine (sort of)
● Session pooling will suffer (a lot)
● Forget about pg_stat_statements (really)
● Open question : can you use logical replication ?

● Once I have PostgreSQL 16, I’ll tell you what happens...



One schema per tenant

● Security breachs are possible, but quite hard to do without a full 
SQL injection

● No indexing drama (kind of)
● Session pooling will kind of work (sort of)
● Tools will endure pain (a lot)
● Forget about pg_stat_statements (don’t even bother installing it)



Tools, tools, what tools?

● pg_dump/pg_restore
● -j : « Run the most time consuming steps concurrently »

● Well… no

● Toc.dat is going to be huge and its parsing is not optimal
● Patchs pending, sorry for my lack of time



Tools, tools, what tools?

● Backups
● You use pgbackrest, right ?
● Enable repo bundle, the best new feature it had in the past years !
● Being able to restore a single schema would be great



Tools, tools, what tools?

● pg_stat_statements
● One database per tenant ?

● You will need a huge value for pg_stat_statements.max

● One schema per tenant ?
● You will not see what happens per tenant
● Normalization is broken here.



Tools, tools, what tools?

● Monitoring tools…
● Forget about graphs
● No tool (to my knowledge) 

will split your database schemas



Rabbit holes, rabbit holes everywhere !

● There is no perfect solution.
● I think a mix of schema per tenant and database per tenant works 

quite well.
● If you can, measure and think it through before committing to any 

solution.
● And put on a happy face, our job would be boring without these.

● Or worse, you could be working with Some Cloud SQL solutions…



Thanks !

Questions ?



Extra…

● Going too far, demonstration
● Writing a PostgreSQL extension to work around impossible statistics
● You know about optimizer « hints » ?
● OFFSET 0 is one of them…


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

