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• We have significant job delays related to SyncRep 

• Strong correlation with vacuum on large tables 

• Increase in SyncRep directly after checkpoint starts 

• While SyncRep piles up, transaction rate goes down 

• Terminate vacuum helps 

• Delay is equal for both standbys  

Problem description



? ?Problem 
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Lets blame the firewall/
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If everything is sequential

• Tcp 

• Wal lsn 

• OS writes 

• Commits

What is the theoretical limit?



“Standby can’t keep up 
with the amount of wal 

writes”



• SAR report 

• IOStat 

• SOSReport 

• ss 

• perf 

• ioping 

• pidstat 

• Netstat 

• iotop 

Lets start some debug
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“A socket is one endpoint of 
a two-way communication 
link between two programs 

running on the network”

SS



Round Trip Time average round trip time with mean deviation

Recv-Q

Send-Q send buffer; not sent or sent but not ACKed

receive buffer, application needs to retreive it

lastsnd How long since last package sent

Socket Statistics 



rtt:5.06/0.428 send 254.1Mbps 

rtt:2.657/2.413 send 457.8Mbps

Socket Statistics 



skmem:( 
r6142208, 
rb6291456, 
t0, 
tb332800, 
f161536, 
w0, 
o0, 
bl0, 
d580)

Socket Statistics 

97.6% rec buffer full
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SS & Perf output





“On high load caused 
by vacuum, restart point 
and activity, the standby  
filesystem can’t keep up  

but the network and  
the disk can”



Solution





wal_recycle = off
Solution



wal_init_zero = off 
Solution



Pin process wal writer single 
cpu

Solution

taskset -pc 5 `pgrep -f walreceiver`
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