
Investigate
High Availability

performance
problems

HIGH AVAILABLE
CONFIGURATIONS ARE VERY
COMMON FOR POSTGRESQL.

BUT HOW DO YOU
INVESTIGATE PERFORMANCE

PROBLEMS WHEN THE
STANDBY CAN'T KEEP UP?

Adyen hero

Boriss Mejias

Senior solution architect

EDB

Database specialist

Derk van Veen

Praised customer

Adyen

Agenda

Concepts A
BC

Problem ?

Investigation?

Solution

Lessons
learned

ConceptsA
BC

A
B

C

db_1 db_2

wal

Cluster Wal sender

Shared buffers

wal buffers

db_1 db_2

wal

Cluster - data flow Wal sender

Shared buffers

wal buffers
1

2

0 1
1 0

0 1
1 0

0 1
1 0

db_1 db_2

wal

Cluster - checkpoint Wal sender

Shared buffers

wal buffers

0 1
1 1

0 1
1 0

0 1
1 0

1 1
1 0

Checkpoint

vacuumbackend

0 1
1 1

1 1
1 0

db_1 db_2

wal

Cluster - checkpoint Wal sender

Shared buffers

wal buffers

0 1
1 1

0 1
1 0

0 1
1 0

1 1
1 0

0 1
1 0

0 1
1 0

Checkpoint

db_1 db_2

wal

Cluster - checkpoint Wal sender

Shared buffers

wal buffers

0 1
1 1

0 1
1 0

0 1
1 0

1 1
1 0

0 1
1 1

0 1
1 0

0 1
1 0

1 1
1 0

Checkpoint

db_1 db_2

wal

Cluster Wal sender

Shared buffers

wal buffers

db_1

Primary

Shared

buffers

wal

Wal sender

wal buffers

db_1

Primary

Wal receiverShared

buffers

wal buffers

wal

Standby

db_1

Shared

buffers

wal

Wal sender

wal buffers

HA setup

Primary

0 1
1 0

Standby

1

2
3

4

5

db_1

Shared

buffers

wal

Wal sender

wal buffers

Wal receiver

wal buffers

Shared

buffers
0 1
1 0 0 1

1 0

wal

0 1
1 0

0 1
1 0

0 1
1 0

Data flow

db_1

Primary Standby

Ack

Ack

db_1

Shared

buffers

wal

Wal sender

wal buffers

Wal receiver

wal buffers

Shared

buffers

Confirm

0 1
1 0

wal

0 1
1 0

0 1
1 0

3

4

5

db_1

1

2

0 1
1 0 0 1

1 0

0 1
1 0

Primary Standby

App
ly Restart point

db_1

Shared

buffers

wal

Wal sender

wal buffers

Wal receiver

wal buffers

db_1

Shared

buffers

0 1
1 0

0 1
1 0

0 1
1 0

Restart point

Wait events

Wait events

IPC wait events

Syncrep wait eventsP S

db_1

Primary

Wal receiverShared

buffers

wal buffers

wal

Standby

db_1

Shared

buffers

wal

Wal sender

wal buffers

SyncRep

db_1

Primary

Wal receiverShared

buffers

wal buffers

wal

Standby

db_1

Shared

buffers

wal

Wal sender

wal buffers

SyncRep

db_1

Primary

Wal receiverShared

buffers

wal buffers

wal

Standby

db_1

Shared

buffers

wal

Wal sender

wal buffers

0 1
1 0

SyncRep

db_1

Primary

Wal receiverShared

buffers

wal buffers

wal

Standby

db_1

Shared

buffers

wal

Wal sender

wal buffers

0 1
1 0

Ack

Ack

SyncRep

Problem? ?

Job is delayed

Job is delayed

Job is delayed

Job is delayed

Mitigation: make vacuum
slower

db_1

Primary

Wal receiverShared

buffers

wal buffers

wal

Standby

db_1

Shared

buffers

wal

Wal sender

wal buffers

SyncRep

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

• We have significant job delays related to SyncRep

• Strong correlation with vacuum on large tables

• Increase in SyncRep directly after checkpoint starts

• While SyncRep piles up, transaction rate goes down

• Terminate vacuum helps

• Delay is equal for both standbys

Problem description

? ?Problem
investigation

Lets blame the firewall/
network

Lets blame the
storage

SSD

db_1

Primary

Wal receiverShared

buffers

wal buffers

wal

Standby

db_1

Shared

buffers

wal

Wal sender

wal buffers

SyncRep

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

db_1

Primary

Wal receiverShared

buffers

wal

Standby

db_1

Shared

buffers

wal

Wal sender

wal buffers

SyncRep

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 00 1

1 0
0 1
1 00 1

1 00 1
1 00 1
1 0

0 1
1 0

0 1
1 00 1

1 0

0 1
1 0

If everything is sequential

• Tcp

• Wal lsn

• OS writes

• Commits

What is the theoretical limit?

“Standby can’t keep up
with the amount of wal

writes”

• SAR report

• IOStat

• SOSReport

• ss

• perf

• ioping

• pidstat

• Netstat

• iotop

Lets start some debug

• SAR report

• IOStat

• SOSReport

• ss

• perf

• ioping

• pidstat

• netstat

• iotop

Lets start some debug

“A socket is one endpoint of
a two-way communication
link between two programs

running on the network”

SS

Round Trip Time average round trip time with mean deviation

Recv-Q

Send-Q send buffer; not sent or sent but not ACKed

receive buffer, application needs to retreive it

lastsnd How long since last package sent

Socket Statistics

rtt:5.06/0.428 send 254.1Mbps

rtt:2.657/2.413 send 457.8Mbps

Socket Statistics

skmem:(
r6142208,
rb6291456,
t0,
tb332800,
f161536,
w0,
o0,
bl0,
d580)

Socket Statistics

97.6% rec buffer full

Perf

Flame Graph Search ic

standard_E..

[po..

hash_search_with_hash_va..

s..

s..

[..

Port..

ExecScan

[auto_explain.so]

main

[pg_stat_state..

i..
[postgres]

sy..

p..

Ex..

Ex..

CommitTransact..

[post..

t..

XLogF..

[postgres]

Ex..

Ex..

[pos..

__fd..

heapgetpage

[postgres]
[postgres]

Exec..

GetC.. [postgres]

sy..

standard_ExecutorRun

BufTableLookup

PostmasterMain

heap_page_prune_opt

[postgres]
PortalRun

t..
[pos..

[postgr..

sy..

[pg..

Ex..

[au..

p..
[pg_..

Po..

Ex..

[..

s..

xf..

Ex..

[postg..

Ex..
Ex..

_..

s..
[pos..

stan..

[..

do..

[po..

t..

Pr..

[aut..

[postgres]

postmaster

sy..

Ex..

[pg_stat_statements.so] __..

Ex..

Exec..

[postgres]

[auto_explain...

s..

[postgres]

s..

heap_getnextslot

ReadBufferExtended

PostgresMain

Ex..

[postgres]

Rea..

Ex..

SPI_e..

AfterTrigg..

pq_getbyte

__libc_start_main

Ex..
Ex..

f..

s..

t..

Ex..

[postgres]

__lib..

Po..
S..

i..

SY..
so..

[postgres]

Perf flame-graph

Flame Graph

standard_E..

[po..

hash_search_with_hash_va..

s..

s..

[..

Port..

ExecScan

[auto_explain.so]

main

[pg_stat_state..

i..
[postgres]

sy..

p..

Ex..

Ex..

CommitTransact..

[post..

t..

XLogF..

[postgres]

Ex..

Ex..

[pos..

__fd..

heapgetpage

[postgres]
[postgres]

Exec..

GetC.. [postgres]

sy..

standard_ExecutorRun

BufTableLookup

PostmasterMain

heap_page_prune_opt

[postgres]
PortalRun

t..
[pos..

[postgr..

sy..

[pg..

Ex..

[au..

p..
[pg_..

Po..

Ex..

[..

s..

xf..

Ex..

[postg..

Ex..
Ex..

_..

s..
[pos..

stan..

[..

do..

[po..

t..

Pr..

[aut..

[postgres]

postmaster

sy..

Ex..

[pg_stat_statements.so] __..

Ex..

Exec..

[postgres]

[auto_explain...

s..

[postgres]

s..

heap_getnextslot

ReadBufferExtended

PostgresMain

Ex..

[postgres]

Rea..

Ex..

SPI_e..

AfterTrigg..

pq_getbyte

__libc_start_main

Ex..
Ex..

f..

s..

t..

Ex..

[postgres]

__lib..

Po..
S..

i..

SY..
so..

[postgres]

SS & Perf output

“On high load caused
by vacuum, restart point
and activity, the standby
filesystem can’t keep up

but the network and
the disk can”

Solution

wal_recycle = off
Solution

wal_init_zero = off
Solution

Pin process wal writer single
cpu

Solution

taskset -pc 5 `pgrep -f walreceiver`

Lessons
learned

Lessons learned

SS
&

Perf

Flame Graph Search ic

standard_E..

[po..

hash_search_with_hash_va..

s..

s..

[..

Port..

ExecScan

[auto_explain.so]

main

[pg_stat_state..

i..
[postgres]

sy..

p..

Ex..

Ex..

CommitTransact..

[post..

t..

XLogF..

[postgres]

Ex..

Ex..

[pos..

__fd..

heapgetpage

[postgres]
[postgres]

Exec..

GetC.. [postgres]

sy..

standard_ExecutorRun

BufTableLookup

PostmasterMain

heap_page_prune_opt

[postgres]
PortalRun

t..
[pos..

[postgr..

sy..

[pg..

Ex..

[au..

p..
[pg_..

Po..

Ex..

[..

s..

xf..

Ex..

[postg..

Ex..
Ex..

_..

s..
[pos..

stan..

[..

do..

[po..

t..

Pr..

[aut..

[postgres]

postmaster

sy..

Ex..

[pg_stat_statements.so] __..

Ex..

Exec..

[postgres]

[auto_explain...

s..

[postgres]

s..

heap_getnextslot

ReadBufferExtended

PostgresMain

Ex..

[postgres]

Rea..

Ex..

SPI_e..

AfterTrigg..

pq_getbyte

__libc_start_main

Ex..
Ex..

f..

s..

t..

Ex..

[postgres]

__lib..

Po..
S..

i..

SY..
so..

[postgres]

Lessons learned

Lessons learned

OS

Special
thanks to

Dmitry Fomin Milen Blagojevic

Adyen

Jakub Wartak Tomas Vondra

EDB

Álvaro Herrera
Muñoz

Questions

