estimating percentiles

(and calculating them faster)

Tomas Vondra <tomas@vondra.me>, Microsoft
@tomasv@fosstodon.org

FOSDEM PGDay 2026, January 30, Brussels

S® Microsoft

mailto:tomas@vondra.me

Agenda =" Microsoft

e not a new invention / feature
o research papers, stream databases, ...
e not strictly database (or Postgres) topic

o motivation: stream processing
o butit's interesting and fun!

e calculating exact percentiles
o ... and what are the challenges
e sketches

o (general idea
o sketches for percentiles: t-digest / ddsketch

_ =" Microsoft
percentiles

e 50% (median), 95%, 99%, ...
o often used in SLAs / monitoring
o simple average / min / max does not describe the data
e exact calculation is (very) expensive

o requires two passes (and expensive sort)

o can't precalculate on subsets of data (how would you merge?)
o difficult to change resolution (1s, 1m, 1h, ...) or apply filters

o have to keep all the data (doesn't work for stream processing)

e if you do this once a day, that's fine

o butif you do it on the main dashboard, it's not great

m. £
percentile_cont / percentile_disc mi Viicroso

https://www.postgresgl.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

CREATE TABLE request _timings (req_method INT, req time DOUBLE PRECISION);

-- table with 10M rows, first column has 1000 distinct values
INSERT INTO request timings
SELECT mod(i,1000), 100 * random()

FROM generate_series(1l, 10 000 000) s(i);

VACUUM ANALYZE request timings;

-- calculate median and 95th percentile for each "method"
SELECT reqgq_method,

percentile cont(ARRAY[0.5, ©.95]) WITHIN GROUP (ORDER BY req_time)
FROM request_timings GROUP BY req_method;

https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

m. £
percentile_cont / percentile_disc mi Viicroso

https://www.postgresgl.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

QUERY PLAN

GroupAggregate (cost=1658507.15..1733518.60 rows=1000 width=36)
Group Key: req_method
-> Sort (cost=1658507.15..1683506.80 rows=9999860 width=12)
Sort Key: req_method
-> Seq Scan on request timings (cost=0.00..154053.60 rows=9999860 width=12)

(5 rows)

Time: 3693.776 ms

https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

m. £
percentile_cont / percentile_disc mi Viicroso

https://www.postgresgl.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

QUERY PLAN

GroupAggregate (cost=431168.44..1678509.89 rows=1000 width=36)
Group Key: req_method
-> Gather Merge (cost=431168.44..1628498.09 rows=9999860 width=12)
Workers Planned: 4
-> Sort (cost=430168.39..436418.30 rows=2499965 width=12)
Sort Key: req_method
-> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(7 rows)

Time: 2869.319 ms (serial: 3693.776 ms)

https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

m. £
percentile_cont / percentile_disc mi Viicroso

https://www.postgresgl.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

QUERY PLAN
GroupAggregate (cost=431168.44..1678509.89 rows=1000 width=36)
Group Key: req_method
-> Gather Merge (cost=431168.44..1628498.09 rows=9999860 width=12)
Workers Planned: 4
-> Sort (cost=430168.39..436418.30 rows=2499965 width=12)
Sort Key: req_method
-> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(7 rows)

Time: 2869.319 ms (serial: 3693.776 ms)
THIS IS NOT THE RIGHT SORT!

https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

B= Microsoft

sketches / digests

W\ £
What are sketches? mm Vicroso

e simplified representation of the data

o estimates, not exact answers

o construction depends on purpose

o some based on probability observations (hll counters)
e incremental building

o enough to see data points once (stream processing)
e advanced features

o "merging" of sketches (parallelism, filtering)

e percentile sketches

o trivial sketch: MCV
o state of the art: t-digest, ddsketch

mE £\
Microsoft
sketch examples “

e hyperloglog [https:/github.com/citusdata/postgresgl-hll]
o approximates COUNT(DISTINCT x)
o similar capabilities, probabilistic foundation
e OpenHistogram
o https://openhistogram.io/
e HdrHistogram
o https://qithub.com/HdrHistogram/HdrHistogram
e count-min sketch
O

e omnisketch

(@)

https://github.com/citusdata/postgresql-hll
https://openhistogram.io/
https://github.com/HdrHistogram/HdrHistogram

The "traditional"” calculation

data

sort

sorted data

calculate > Q

Calculation with sketches

data

build >

sketch

calculate > Q

Calculation with sketches

data

build >

sketch

Calculation with sketches

data build > sketch

Calculation with sketches

sketch

B= Microsoft

percentiles vs. histograms

P D F Normal(mean=10.0, stdev=2.0)

0.4

0.35 -

03 -

0.25 -

0.15 -

0.1 -

0.05 -

C D F Normal(mean=10.0, stdev=2.0)

20

0.9 |-

0.6 -
0.5+
0.4 -
03 [
0.2 -

20

F) D F Normal(mean=10.0, stdev=2.0)

0.4

0.35 -

03 -

0.25 -

0.15 -

0.1 -

0.05 -

C D F Normal(mean=10.0, stdev=2.0)

20

0.9 |-

0.6 -
0.5+
0.4 -
03 [
0.2 -

20

equi-width

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
0

Normal(mean=10.0, stdev=2.0)

10

15

20

P D F Normal(mean=10.0, stdev=2.0)

0.4

0.35 -

03 -

0.25 -

0.15 -

0.1 -

0.05 -

C D F Normal(mean=10.0, stdev=2.0)

20

0.9 |-

0.6 -
0.5 -
0.4 -
03 [
0.2 -

20

equi-width

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
0

100000

80000

60000

40000

20000

Normal(mean=10.0, stdev=2.0)

T
| |
0 10 15 20
eq u I-d e pth Normal(mean=10.0, stdev=2.0)
T
| |
0 10 15 20

P D F Normal(mean=10.0, stdev=2.0)

0.4

0.35 -

03 -

0.25 -

0.15 -

0.1 -

0.05 -

C D F Normal(mean=10.0, stdev=2.0)

20

0.9 |-

0.6 -
0.5
0.4 -
03 [
0.2 -

20

equi-width

1x10°
900000
800000
700000
600000
500000
400000
300000
200000
100000
0

Normal(mean=10.0, stdev=2.0)

l_tf

0

eq U i'd e pth Normal(mean=10.0, stdev=2.0)

1

15

20

0.6 -

0.4 -

0.2 -

15

20

PD F Normal(mean=10.0, stdev=2.0) eq u I_Wldth Normal(mean=10.0, stdev=2.0) ~ddSketCh

0.4 1106 :
[_l

i L | 900000 - B 4

800000 | _
03 4

700000 [| -
825 = 7 600000 [4
02 F 4 500000 | — .
s L i 400000 -

300000 [4
01 4

200000 -
003 = 7 100000 |-]

0 0 | |
0 20 0 5 10 15 20

’ . equi-depth . s ~t-digest
Normal(mean=10.0, stdev=2.0) Normal(mean=10.0, stdev=2.0)
CDF | |

T
0.9 - =
08 . 08 Hr_ §
0.7 - - H
0.6 - - 0.6 - Hrr —
05 4 H
0.4 - = 0.4 - -
03 - —
02 . 02t §
0.1 - —
0 0 | | |
0 20 0 5 10 15 20

== Microsoft

t-digest

_ =" Microsoft
t-d Igest [https://github.com/tvondra/tdigest]

- 2019 paper by Ted Dunning, Otmar Ertl

Computing Extremely Accurate Quantiles Using t-Digests
https://github.com/tdunning/t-digest

- basic idea: clustering / centroids

- represent data as "centroids" - pairs (value, count)

- centroid ~ histogram bin

- accumulate data until some space limit

- merge centroids in a way that "maximizes" resolution

https://github.com/tvondra/tdigest
https://github.com/tdunning/t-digest

digest =" Microsoft

20 values, let's build 5 bins
in practice:

millions of points
hundreds of bins

(]
]
]
]
]
E
]
]
]
]
]
]
E
]
]
]
]
(]

tdigest =& Microsoft

simple: equi-width bins

(]
]
]
]
]
E
]
]
]
]
]
]
E
]
]
]
]
(]

tdigest =& Microsoft

simple: equi-width bins

(centroids are red)

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
mM—' I B | o T B | o I I |
L T L LI | . | S L |- 1 L

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

t-digest =" Microsoft

advanced: smaller bins on tails

(better accuracy ~0.0 and ~1.0)

]
]
E
]
]

[Mi £t
t-digest - 10M values, uniform [0, 1] mm YICroso

SELECT tdigest(a, 200) FROM test_table;
250000 I I | T

200000

I
|

I
|

150000

100000 -

'\

50000

0 ‘IMI“H” I I
0

0.2 0.4 0.6 0.8

lllll\n' £t
t-digest example i VIETes0

SELECT req_method,

tdigest_percentile(tdigest(req_time, 100), array[0.5, 0.95])
FROM request_timings GROUP BY req_method;

QUERY PLAN

HashAggregate (cost=204052.90..204065.40 rows=1000 width=36)
Group Key: req_method

-> Seq Scan on request_timings (cost=0.00..154053.60 rows=9999860 width=12)
(3 rows)

Time: 2565.322 ms (percentile cont: 3693.776 ms)

t-digest example

SELECT req_method,

tdigest_percentile_of(tdigest(req_time, 100), array[50.0, 95.0])
FROM request_timings GROUP BY req_method;

QUERY PLAN

Finalize GroupAggregate (cost=92616.86..93138.30 rows=1000 width=36)
Group Key: req_method
-> Gather Merge (cost=92616.86..93095.80 rows=4000 width=36)
Workers Planned: 4
-> Sort (cost=91616.80..91619.30 rows=1000 width=36)
Sort Key: req_method
-> Partial HashAggregate (cost=91554.48..91566.98 rows=1000 width=36)
Group Key: req_method

=" Microsoft

-> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(9 rows)

Time: 967.469 ms (percentile_cont: 2869.319 ms)

t-digest =" Microsoft

e result depends on data ordering

o can be a problem for "weird" data (e.g. perfectly correlated / sorted)

o more a batch/reporting problem, not for user requests
e result depends on parallelism

o workers see different subsets of data on each run

o different partial results in workers, similar to ordering
e inherently not deterministic

o unless you fix the ordering / parallelism

o surprising, makes testing harder

t-digest =" Microsoft

e doesn't have reliable error guarantees

o "rank error" guarantee for strongly ordered case
o breaks due to "weak ordering" of merged digest (overlapping centroids)
o but merging also allows parallelism, precalculation, incremental builds

o works well in practice, though (good empirical results)
e "rank error" is not the right error

o it's pretty much the "opposite" of what users need

== Microsoft

ddsketch

=" Microsoft
ddsketch (s ithub.comtvondrarddsketcn]

- 2019 VLDB paper by Datadog (real-time monitoring SaaS)

DDSketch: A Fast and Fully-Mergeable Quantile Sketch with Relative-Error Guarantees
https://www.vldb.org/pvidb/vol12/p2195-masson.pdf

- DDSketch = Distributed Distribution Sketch

- ... but also the company is called "Datadog" ;-)
- very different approach (from t-digest)

- limits relative error (this guides the design)

- deterministic, buckets determined by a-accuracy

https://github.com/tvondra/ddsketch
https://www.vldb.org/pvldb/vol12/p2195-masson.pdf

] Mi ft
ddsketch mi MICroso

goal:
e non-overlapping bins
e (Quarantee that

0.90 percentile?

IE(X) - X| <= aX

. 90 100

] Mi ft
ddsketch mi MICroso

goal:
e non-overlapping bins
e (Quarantee that

0.95 percentile?

IE(X) - X| <= aX

0 | 90 | 100
90/(1+a) 9b/(1-a)

=& Microsoft

ddsketch
goal:
e non-overlapping bins
e (Quarantee that
0.95 percentile?
|[E(X) - X|] <= aX
0 710 | e | 100

10/(1 +a) 10/(1-a) 90/ (1+a) 90/ (1-a)

| FVFE
ddsketch - 10M values, uniform [0, 100] m= Microsoft
SELECT ddsketch(a * 100, 0.05, 200) FROM test_table;
Tadls ! ! T T T
900000 |-]

800000 - |
700000 |- i
600000 [~ I
500000 - |
400000 |
300000 |-

200000 |- |
100000 | | i

. ;unnlIIIHHH
0

. = o0 80 100 120

W\ £
ddsketch example mm Vlicroso

SELECT req_method,

ddsketch_percentile(ddsketch(req_time, 0.05, 1024), array[0.5, 0.95])
FROM request_timings GROUP BY req_method;

QUERY PLAN

HashAggregate (cost=204052.90..204065.40 rows=1000 width=36)
Group Key: req_method

-> Seq Scan on request_timings (cost=0.00..154053.60 rows=9999860 width=12)
(3 rows)

Time: 1932.321 ms (percentile_cont: 3693.776 ms, t-digest: 2565.322 ms)

W\ £
ddsketch example mm Vlicroso

SELECT req_method,
ddsketch_percentile(ddsketch(req_time, ©.05, 1024), array[0.5, 0.95])
FROM request_timings GROUP BY req_method;

QUERY PLAN
Finalize GroupAggregate (cost=92616.86..93138.30 rows=1000 width=36)
Group Key: req_method
-> Gather Merge (cost=92616.86..93095.80 rows=4000 width=36)
Workers Planned: 4
-> Sort (cost=91616.80..91619.30 rows=1000 width=36)
Sort Key: req_method
-> Partial HashAggregate (cost=91554.48..91566.98 rows=1000 width=36)
Group Key: req_method

-> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)
(9 rows)

Time: 490.612 ms (percentile_cont: 2869.319 ms, t-digest: 967.469 ms)

B= Microsoft

precalculation

_ =" Microsoft
precalculation

e OLAP - precalculate at fine granularity
o still a significant compression
o aggregate these precalculated results (fast)
e API response times
o pre-aggregate per-minute digests (incremental)
o fast dashboards with 1h windows + drill down
e also in distributed / monitoring systems

o remote system aggregates into sketch
o transmits small sketch instead of full raw event stream

m. £
precalculation: ddsketch mm Microso

CREATE TABLE request_sketches AS
SELECT req_method,

ddsketch(req_time, 0.05, 1024) AS s
FROM request_timings GROUP BY req_method;

List of relations

Schema | Name | Type | Owner | Persistence | Access method | Size
———————— S
public | request_sketches | table | user | permanent | heap | 1544 kB
public | request_timings | table | user | permanent | heap | 422 MB

m. £
precalculation: ddsketch mm Microso

SELECT
ddsketch_percentile(ddsketch(s), array[0.5, 0.95])
FROM request_sketches WHERE req_method IN (1,2,3);

QUERY PLAN

Aggregate (cost=205.76..205.77 rows=1 width=32)
-> Seqg Scan on request _sketches (cost=0.00..205.75 rows=3 width=1260)
Filter: (req_method = ANY ('{1,2,3}'::integer[]))
(3 rows)

Execution Time: ©.932 ms

== Microsoft

conclusions

_ =" Microsoft
conclusions

e sketches are a great & general idea!
o Who says you can't design a sketch for other things?
o hyperloglog, count-min, omnisketch

e powerful approach

o estimate is often good enough (it's a trade-off)
o merging allows parallelizing / precalculating

e t-digest/ddsketch

o CDF approximation = form of a histogram
o accuracy guarantees
o can answer other questions (averages, percentile-of, ...)

== Microsoft
sources

e Small Summaries for Big Data / Graham Cormode, Ke Yi

Graham Cormode = Ke Yi

https://www.cambridge.org/core/books/small-summaries-for-big-data/B41310C236A3D3574C273C42B71F35A4
e Apache DataSketches

https://datasketches.apache.org/

e count-min sketch

https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch

e DDSketch: A fast and fully-mergeable quantile sketch with relative-error

guarantees
https://arxiv.org/abs/1908.10693

e UDDSKketch: Accurate Tracking of Quantiles in Data Streams
https://arxiv.org/abs/2004.08604

e Computing Extremely Accurate Quantiles Using t-Digests

https://arxiv.org/abs/1902.04023

https://www.cambridge.org/core/books/small-summaries-for-big-data/B41310C236A3D3574C273C42B71F35A4
https://datasketches.apache.org/
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://arxiv.org/abs/1908.10693
https://arxiv.org/abs/2004.08604
https://arxiv.org/abs/1902.04023

== Microsoft

Q&A

