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e not a new invention / feature
o research papers, stream databases, ...
e not strictly database (or Postgres) topic

o motivation: stream processing
o butit's interesting and fun!

e calculating exact percentiles
o ... and what are the challenges
e sketches

o (general idea
o sketches for percentiles: t-digest / ddsketch



_ =" Microsoft
percentiles

e 50% (median), 95%, 99%, ...
o often used in SLAs / monitoring
o simple average / min / max does not describe the data
e exact calculation is (very) expensive

o requires two passes (and expensive sort)

o can't precalculate on subsets of data (how would you merge?)
o difficult to change resolution (1s, 1m, 1h, ...) or apply filters

o have to keep all the data (doesn't work for stream processing)

e if you do this once a day, that's fine

o butif you do it on the main dashboard, it's not great
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https://www.postgresgl.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

CREATE TABLE request _timings (req_method INT, req time DOUBLE PRECISION);

-- table with 10M rows, first column has 1000 distinct values
INSERT INTO request timings
SELECT mod(i,1000), 100 * random()

FROM generate_series(1l, 10 000 000) s(i);

VACUUM ANALYZE request timings;

-- calculate median and 95th percentile for each "method"
SELECT reqgq_method,

percentile cont(ARRAY[0.5, ©.95]) WITHIN GROUP (ORDER BY req_time)
FROM request_timings GROUP BY req_method;


https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE
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https://www.postgresgl.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

QUERY PLAN

GroupAggregate (cost=1658507.15..1733518.60 rows=1000 width=36)
Group Key: req_method
-> Sort (cost=1658507.15..1683506.80 rows=9999860 width=12)
Sort Key: req_method
-> Seq Scan on request timings (cost=0.00..154053.60 rows=9999860 width=12)

(5 rows)

Time: 3693.776 ms


https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE
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https://www.postgresgl.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

QUERY PLAN

GroupAggregate (cost=431168.44..1678509.89 rows=1000 width=36)
Group Key: req_method
-> Gather Merge (cost=431168.44..1628498.09 rows=9999860 width=12)
Workers Planned: 4
-> Sort (cost=430168.39..436418.30 rows=2499965 width=12)
Sort Key: req_method
-> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(7 rows)

Time: 2869.319 ms (serial: 3693.776 ms)


https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE
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https://www.postgresgl.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

QUERY PLAN
GroupAggregate (cost=431168.44..1678509.89 rows=1000 width=36)
Group Key: req_method
-> Gather Merge (cost=431168.44..1628498.09 rows=9999860 width=12)
Workers Planned: 4
-> Sort (cost=430168.39..436418.30 rows=2499965 width=12)
Sort Key: req_method
-> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(7 rows)

Time: 2869.319 ms (serial: 3693.776 ms)
THIS IS NOT THE RIGHT SORT!


https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

B= Microsoft

sketches / digests
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e simplified representation of the data

o estimates, not exact answers

o construction depends on purpose

o some based on probability observations (hll counters)
e incremental building

o enough to see data points once (stream processing)
e advanced features

o "merging" of sketches (parallelism, filtering)

e percentile sketches

o trivial sketch: MCV
o state of the art: t-digest, ddsketch
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e hyperloglog [https:/github.com/citusdata/postgresgl-hll]
o approximates COUNT(DISTINCT x)
o similar capabilities, probabilistic foundation
e OpenHistogram
o https://openhistogram.io/
e HdrHistogram
o https://qithub.com/HdrHistogram/HdrHistogram
e count-min sketch
O

e omnisketch

(@)



https://github.com/citusdata/postgresql-hll
https://openhistogram.io/
https://github.com/HdrHistogram/HdrHistogram

The "traditional"” calculation

data

sort

sorted data

calculate > Q



Calculation with sketches

data

build >

sketch

calculate > Q



Calculation with sketches

data

build >

sketch




Calculation with sketches

data build > sketch




Calculation with sketches

sketch
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percentiles vs. histograms
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t-digest
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t-d Igest [https://github.com/tvondra/tdigest]

- 2019 paper by Ted Dunning, Otmar Ertl

Computing Extremely Accurate Quantiles Using t-Digests
https://github.com/tdunning/t-digest

- basic idea: clustering / centroids

- represent data as "centroids" - pairs (value, count)

- centroid ~ histogram bin

- accumulate data until some space limit

- merge centroids in a way that "maximizes" resolution


https://github.com/tvondra/tdigest
https://github.com/tdunning/t-digest
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20 values, let's build 5 bins
in practice:

millions of points
hundreds of bins
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tdigest =& Microsoft

simple: equi-width bins
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tdigest =& Microsoft

simple: equi-width bins

(centroids are red)
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advanced: smaller bins on tails

(better accuracy ~0.0 and ~1.0)
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SELECT tdigest(a, 200) FROM test_table;
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SELECT req_method,

tdigest_percentile(tdigest(req_time, 100), array[0.5, 0.95])
FROM request_timings GROUP BY req_method;

QUERY PLAN

HashAggregate (cost=204052.90..204065.40 rows=1000 width=36)
Group Key: req_method

-> Seq Scan on request_timings (cost=0.00..154053.60 rows=9999860 width=12)
(3 rows)

Time: 2565.322 ms (percentile cont: 3693.776 ms)



t-digest example

SELECT req_method,

tdigest_percentile_of(tdigest(req_time, 100), array[50.0, 95.0])
FROM request_timings GROUP BY req_method;

QUERY PLAN

Finalize GroupAggregate (cost=92616.86..93138.30 rows=1000 width=36)
Group Key: req_method
-> Gather Merge (cost=92616.86..93095.80 rows=4000 width=36)
Workers Planned: 4
-> Sort (cost=91616.80..91619.30 rows=1000 width=36)
Sort Key: req_method
-> Partial HashAggregate (cost=91554.48..91566.98 rows=1000 width=36)
Group Key: req_method

=" Microsoft

-> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(9 rows)

Time: 967.469 ms (percentile_cont: 2869.319 ms)
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e result depends on data ordering

o can be a problem for "weird" data (e.g. perfectly correlated / sorted)

o more a batch/reporting problem, not for user requests
e result depends on parallelism

o workers see different subsets of data on each run

o different partial results in workers, similar to ordering
e inherently not deterministic

o unless you fix the ordering / parallelism

o surprising, makes testing harder
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e doesn't have reliable error guarantees

o "rank error" guarantee for strongly ordered case
o breaks due to "weak ordering" of merged digest (overlapping centroids)
o but merging also allows parallelism, precalculation, incremental builds

o works well in practice, though (good empirical results)
e "rank error" is not the right error

o it's pretty much the "opposite" of what users need
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ddsketch
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ddsketch (s ithub.comtvondrarddsketcn]

- 2019 VLDB paper by Datadog (real-time monitoring SaaS)

DDSketch: A Fast and Fully-Mergeable Quantile Sketch with Relative-Error Guarantees
https://www.vldb.org/pvidb/vol12/p2195-masson.pdf

- DDSketch = Distributed Distribution Sketch

- ... but also the company is called "Datadog" ;-)
- very different approach (from t-digest)

- limits relative error (this guides the design)

- deterministic, buckets determined by a-accuracy


https://github.com/tvondra/ddsketch
https://www.vldb.org/pvldb/vol12/p2195-masson.pdf
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goal:
e non-overlapping bins
e (Quarantee that
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goal:
e non-overlapping bins
e (Quarantee that
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ddsketch
goal:
e non-overlapping bins
e (Quarantee that
0.95 percentile?
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SELECT ddsketch(a * 100, 0.05, 200) FROM test_table;
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SELECT req_method,

ddsketch_percentile(ddsketch(req_time, 0.05, 1024), array[0.5, 0.95])
FROM request_timings GROUP BY req_method;

QUERY PLAN

HashAggregate (cost=204052.90..204065.40 rows=1000 width=36)
Group Key: req_method

-> Seq Scan on request_timings (cost=0.00..154053.60 rows=9999860 width=12)
(3 rows)

Time: 1932.321 ms (percentile_cont: 3693.776 ms, t-digest: 2565.322 ms)
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SELECT req_method,
ddsketch_percentile(ddsketch(req_time, ©.05, 1024), array[0.5, 0.95])
FROM request_timings GROUP BY req_method;

QUERY PLAN
Finalize GroupAggregate (cost=92616.86..93138.30 rows=1000 width=36)
Group Key: req_method
-> Gather Merge (cost=92616.86..93095.80 rows=4000 width=36)
Workers Planned: 4
-> Sort (cost=91616.80..91619.30 rows=1000 width=36)
Sort Key: req_method
-> Partial HashAggregate (cost=91554.48..91566.98 rows=1000 width=36)
Group Key: req_method

-> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)
(9 rows)

Time: 490.612 ms (percentile_cont: 2869.319 ms, t-digest: 967.469 ms)
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precalculation
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precalculation

e OLAP - precalculate at fine granularity
o still a significant compression
o aggregate these precalculated results (fast)
e API response times
o pre-aggregate per-minute digests (incremental)
o fast dashboards with 1h windows + drill down
e also in distributed / monitoring systems

o remote system aggregates into sketch
o transmits small sketch instead of full raw event stream
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CREATE TABLE request_sketches AS
SELECT req_method,

ddsketch(req_time, 0.05, 1024) AS s
FROM request_timings GROUP BY req_method;

List of relations

Schema | Name | Type | Owner | Persistence | Access method | Size
———————— S
public | request_sketches | table | user | permanent | heap | 1544 kB
public | request_timings | table | user | permanent | heap | 422 MB
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SELECT
ddsketch_percentile(ddsketch(s), array[0.5, 0.95])
FROM request_sketches WHERE req_method IN (1,2,3);

QUERY PLAN

Aggregate (cost=205.76..205.77 rows=1 width=32)
-> Seqg Scan on request _sketches (cost=0.00..205.75 rows=3 width=1260)
Filter: (req_method = ANY ('{1,2,3}'::integer[]))
(3 rows)

Execution Time: ©.932 ms
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conclusions
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conclusions

e sketches are a great & general idea!
o Who says you can't design a sketch for other things?
o hyperloglog, count-min, omnisketch

e powerful approach

o estimate is often good enough (it's a trade-off)
o merging allows parallelizing / precalculating

e t-digest/ddsketch

o CDF approximation = form of a histogram
o accuracy guarantees
o can answer other questions (averages, percentile-of, ...)
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sources

e Small Summaries for Big Data / Graham Cormode, Ke Yi

Graham Cormode = Ke Yi

https://www.cambridge.org/core/books/small-summaries-for-big-data/B41310C236A3D3574C273C42B71F35A4
e Apache DataSketches

https://datasketches.apache.org/

e count-min sketch

https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch

e DDSketch: A fast and fully-mergeable quantile sketch with relative-error

guarantees
https://arxiv.org/abs/1908.10693

e UDDSKketch: Accurate Tracking of Quantiles in Data Streams
https://arxiv.org/abs/2004.08604

e Computing Extremely Accurate Quantiles Using t-Digests

https://arxiv.org/abs/1902.04023



https://www.cambridge.org/core/books/small-summaries-for-big-data/B41310C236A3D3574C273C42B71F35A4
https://datasketches.apache.org/
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://arxiv.org/abs/1908.10693
https://arxiv.org/abs/2004.08604
https://arxiv.org/abs/1902.04023

== Microsoft

Q&A



