
estimating percentiles
(and calculating them faster)

Tomáš Vondra <tomas@vondra.me>, Microsoft
@tomasv@fosstodon.org

FOSDEM PGDay 2026, January 30, Brussels

mailto:tomas@vondra.me


Agenda

● not a new invention / feature
○ research papers, stream databases, ...

● not strictly database (or Postgres) topic
○ motivation: stream processing
○ but it's interesting and fun!

● calculating exact percentiles
○ ... and what are the challenges

● sketches
○ general idea
○ sketches for percentiles: t-digest / ddsketch
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percentiles

● 50% (median), 95%, 99%, ...
○ often used in SLAs / monitoring
○ simple average / min / max does not describe the data

● exact calculation is (very) expensive
○ requires two passes (and expensive sort)
○ can't precalculate on subsets of data (how would you merge?)
○ difficult to change resolution (1s, 1m, 1h, ...) or apply filters
○ have to keep all the data (doesn't work for stream processing)

● if you do this once a day, that's fine
○ but if you do it on the main dashboard, it's not great
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percentile_cont / percentile_disc
https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE 

CREATE TABLE request_timings (req_method INT, req_time DOUBLE PRECISION);

-- table with 10M rows, first column has 1000 distinct values
INSERT INTO request_timings
SELECT mod(i,1000), 100 * random()
  FROM generate_series(1, 10_000_000) s(i);

VACUUM ANALYZE request_timings;

-- calculate median and 95th percentile for each "method"
SELECT req_method,
   percentile_cont(ARRAY[0.5, 0.95]) WITHIN GROUP (ORDER BY req_time)
FROM request_timings GROUP BY req_method;
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percentile_cont / percentile_disc
https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE 

                                    QUERY PLAN

----------------------------------------------------------------------------------

 GroupAggregate  (cost=1658507.15..1733518.60 rows=1000 width=36)

   Group Key: req_method

   ->  Sort  (cost=1658507.15..1683506.80 rows=9999860 width=12)

         Sort Key: req_method

         ->  Seq Scan on request_timings  (cost=0.00..154053.60 rows=9999860 width=12)

(5 rows)

Time: 3693.776 ms
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percentile_cont / percentile_disc
https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE 

                                           QUERY PLAN

------------------------------------------------------------------------------------------------

 GroupAggregate  (cost=431168.44..1678509.89 rows=1000 width=36)

   Group Key: req_method

   ->  Gather Merge  (cost=431168.44..1628498.09 rows=9999860 width=12)

         Workers Planned: 4

         ->  Sort  (cost=430168.39..436418.30 rows=2499965 width=12)

               Sort Key: req_method

               ->  Parallel Seq Scan on request_timings  (cost=0.00..79054.65 rows=2499965 width=12)

(7 rows)

Time: 2869.319 ms (serial: 3693.776 ms)
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percentile_cont / percentile_disc
https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE 

                                           QUERY PLAN

------------------------------------------------------------------------------------------------

 GroupAggregate  (cost=431168.44..1678509.89 rows=1000 width=36)

   Group Key: req_method

   ->  Gather Merge  (cost=431168.44..1628498.09 rows=9999860 width=12)

         Workers Planned: 4

         ->  Sort  (cost=430168.39..436418.30 rows=2499965 width=12)

               Sort Key: req_method

               ->  Parallel Seq Scan on request_timings  (cost=0.00..79054.65 rows=2499965 width=12)

(7 rows)

Time: 2869.319 ms (serial: 3693.776 ms)

THIS IS NOT THE RIGHT SORT!
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sketches / digests
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What are sketches?

● simplified representation of the data
○ estimates, not exact answers
○ construction depends on purpose
○ some based on probability observations (hll counters)

● incremental building
○ enough to see data points once (stream processing)

● advanced features
○ "merging" of sketches (parallelism, filtering)

● percentile sketches
○ trivial sketch: MCV
○ state of the art: t-digest, ddsketch
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sketch examples

● hyperloglog [https://github.com/citusdata/postgresql-hll]
○ approximates COUNT(DISTINCT x)
○ similar capabilities, probabilistic foundation

● OpenHistogram
○ https://openhistogram.io/ 

● HdrHistogram
○ https://github.com/HdrHistogram/HdrHistogram 

● count-min sketch
○ ...

● omnisketch
○ ...
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The "traditional" calculation

data sort sorted data calculate



Calculation with sketches

data build sketch calculate
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Calculation with sketches
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percentiles vs. histograms
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t-digest
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t-digest [https://github.com/tvondra/tdigest]

- 2019 paper by Ted Dunning, Otmar Ertl

Computing Extremely Accurate Quantiles Using t-Digests
https://github.com/tdunning/t-digest 

- basic idea: clustering / centroids
- represent data as "centroids" - pairs (value, count)
- centroid ~ histogram bin
- accumulate data until some space limit
- merge centroids in a way that "maximizes" resolution
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t-digest
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20 values, let's build 5 bins

in practice:
millions of points
hundreds of bins



t-digest
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simple: equi-width bins



t-digest
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simple: equi-width bins

(centroids are red)



t-digest
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advanced: smaller bins on tails

(better accuracy ~0.0 and ~1.0)



t-digest - 10M values, uniform [0, 1]
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t-digest example

SELECT req_method,

    tdigest_percentile(tdigest(req_time, 100), array[0.5, 0.95])

FROM request_timings GROUP BY req_method;

                                 QUERY PLAN

----------------------------------------------------------------------------

 HashAggregate  (cost=204052.90..204065.40 rows=1000 width=36)

   Group Key: req_method

   ->  Seq Scan on request_timings  (cost=0.00..154053.60 rows=9999860 width=12)

(3 rows)

Time: 2565.322 ms (percentile_cont: 3693.776 ms)
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t-digest example

SELECT req_method,
    tdigest_percentile_of(tdigest(req_time, 100), array[50.0, 95.0])
FROM request_timings GROUP BY req_method;

                                              QUERY PLAN                                              
------------------------------------------------------------------------------------------------------
 Finalize GroupAggregate  (cost=92616.86..93138.30 rows=1000 width=36)
   Group Key: req_method
   ->  Gather Merge  (cost=92616.86..93095.80 rows=4000 width=36)
         Workers Planned: 4
         ->  Sort  (cost=91616.80..91619.30 rows=1000 width=36)
               Sort Key: req_method
               ->  Partial HashAggregate  (cost=91554.48..91566.98 rows=1000 width=36)
                     Group Key: req_method
                     ->  Parallel Seq Scan on request_timings  (cost=0.00..79054.65 rows=2499965 width=12)
(9 rows)

Time: 967.469 ms (percentile_cont: 2869.319 ms)
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t-digest

● result depends on data ordering
○ can be a problem for "weird" data (e.g. perfectly correlated / sorted)

○ more a batch/reporting problem, not for user requests

● result depends on parallelism
○ workers see different subsets of data on each run

○ different partial results in workers, similar to ordering

● inherently not deterministic
○ unless you fix the ordering / parallelism

○ surprising, makes testing harder
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● doesn't have reliable error guarantees
○ "rank error" guarantee for strongly ordered case

○ breaks due to "weak ordering" of merged digest (overlapping centroids)

○ but merging also allows parallelism, precalculation, incremental builds

○ works well in practice, though (good empirical results)

● "rank error" is not the right error
○ it's pretty much the "opposite" of what users need

t-digest
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ddsketch

FOSDEM PGDay 2026



ddsketch [https://github.com/tvondra/ddsketch]

- 2019 VLDB paper by Datadog (real-time monitoring SaaS)

DDSketch: A Fast and Fully-Mergeable Quantile Sketch with Relative-Error Guarantees

https://www.vldb.org/pvldb/vol12/p2195-masson.pdf

- DDSketch = Distributed Distribution Sketch
- ... but also the company is called "Datadog" ;-)

- very different approach (from t-digest)
- limits relative error (this guides the design)

- deterministic, buckets determined by ɑ-accuracy
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ddsketch
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0 100

0.90 percentile?

goal:
● non-overlapping bins
● guarantee that

|E(X) - X| <= αX

90



ddsketch
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0.95 percentile?

goal:
● non-overlapping bins
● guarantee that

|E(X) - X| <= αX
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90 / (1 + α) 90 / (1 - α)



ddsketch
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0 100

0.95 percentile?

goal:
● non-overlapping bins
● guarantee that

|E(X) - X| <= αX

90
90 / (1 + α) 90 / (1 - α)

10
10/(1 + α) 10/(1 - α)



ddsketch - 10M values, uniform [0, 100]
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ddsketch example

SELECT req_method,

    ddsketch_percentile(ddsketch(req_time, 0.05, 1024), array[0.5, 0.95])

FROM request_timings GROUP BY req_method;

                                 QUERY PLAN

----------------------------------------------------------------------------

 HashAggregate  (cost=204052.90..204065.40 rows=1000 width=36)

   Group Key: req_method

   ->  Seq Scan on request_timings  (cost=0.00..154053.60 rows=9999860 width=12)

(3 rows)

Time: 1932.321 ms (percentile_cont: 3693.776 ms, t-digest: 2565.322 ms)
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ddsketch example
SELECT req_method,

    ddsketch_percentile(ddsketch(req_time, 0.05, 1024), array[0.5, 0.95])

FROM request_timings GROUP BY req_method;

                                              QUERY PLAN

------------------------------------------------------------------------------------------------------

 Finalize GroupAggregate  (cost=92616.86..93138.30 rows=1000 width=36)

   Group Key: req_method

   ->  Gather Merge  (cost=92616.86..93095.80 rows=4000 width=36)

         Workers Planned: 4

         ->  Sort  (cost=91616.80..91619.30 rows=1000 width=36)

               Sort Key: req_method

               ->  Partial HashAggregate  (cost=91554.48..91566.98 rows=1000 width=36)

                     Group Key: req_method

                     ->  Parallel Seq Scan on request_timings  (cost=0.00..79054.65 rows=2499965 width=12)

(9 rows)

Time: 490.612 ms (percentile_cont: 2869.319 ms, t-digest: 967.469 ms)
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precalculation
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● OLAP - precalculate at fine granularity
○ still a significant compression
○ aggregate these precalculated results (fast)

● API response times
○ pre-aggregate per-minute digests (incremental)
○ fast dashboards with 1h windows + drill down

● also in distributed / monitoring systems
○ remote system aggregates into sketch
○ transmits small sketch instead of full raw event stream

precalculation
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precalculation: ddsketch

CREATE TABLE request_sketches AS

SELECT req_method,

    ddsketch(req_time, 0.05, 1024) AS s

FROM request_timings GROUP BY req_method;

                              List of relations

 Schema |      Name        | Type  | Owner | Persistence | Access method |  Size

--------+------------------+-------+-------+-------------+---------------+---------

 public | request_sketches | table | user  | permanent   | heap          | 1544 kB

 public | request_timings  | table | user  | permanent   | heap          | 422 MB

(2 rows)
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precalculation: ddsketch

SELECT

    ddsketch_percentile(ddsketch(s), array[0.5, 0.95])

FROM request_sketches WHERE req_method IN (1,2,3);

                                QUERY PLAN                                 

---------------------------------------------------------------------------

 Aggregate  (cost=205.76..205.77 rows=1 width=32)

   ->  Seq Scan on request_sketches  (cost=0.00..205.75 rows=3 width=1260)

         Filter: (req_method = ANY ('{1,2,3}'::integer[]))

(3 rows)

 Execution Time: 0.932 ms
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conclusions
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● sketches are a great & general idea!
○ Who says you can't design a sketch for other things?
○ hyperloglog, count-min, omnisketch

● powerful approach
○ estimate is often good enough (it's a trade-off)
○ merging allows parallelizing / precalculating

● t-digest/ddsketch
○ CDF approximation = form of a histogram
○ accuracy guarantees
○ can answer other questions (averages, percentile-of, ...)

conclusions
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● Small Summaries for Big Data / Graham Cormode, Ke Yi
https://www.cambridge.org/core/books/small-summaries-for-big-data/B41310C236A3D3574C273C42B71F35A4 

● Apache DataSketches
https://datasketches.apache.org/ 

● count-min sketch
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch 

● DDSketch: A fast and fully-mergeable quantile sketch with relative-error 
guarantees
https://arxiv.org/abs/1908.10693 

● UDDSketch: Accurate Tracking of Quantiles in Data Streams
https://arxiv.org/abs/2004.08604 

● Computing Extremely Accurate Quantiles Using t-Digests
https://arxiv.org/abs/1902.04023 

sources
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Q & A
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