
estimating percentiles
(and calculating them faster)

Tomáš Vondra <tomas@vondra.me>, Microsoft
@tomasv@fosstodon.org

FOSDEM PGDay 2026, January 30, Brussels

mailto:tomas@vondra.me

Agenda

● not a new invention / feature
○ research papers, stream databases, ...

● not strictly database (or Postgres) topic
○ motivation: stream processing
○ but it's interesting and fun!

● calculating exact percentiles
○ ... and what are the challenges

● sketches
○ general idea
○ sketches for percentiles: t-digest / ddsketch

FOSDEM PGDay 2026

percentiles

● 50% (median), 95%, 99%, ...
○ often used in SLAs / monitoring
○ simple average / min / max does not describe the data

● exact calculation is (very) expensive
○ requires two passes (and expensive sort)
○ can't precalculate on subsets of data (how would you merge?)
○ difficult to change resolution (1s, 1m, 1h, ...) or apply filters
○ have to keep all the data (doesn't work for stream processing)

● if you do this once a day, that's fine
○ but if you do it on the main dashboard, it's not great

FOSDEM PGDay 2026

percentile_cont / percentile_disc
https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

CREATE TABLE request_timings (req_method INT, req_time DOUBLE PRECISION);

-- table with 10M rows, first column has 1000 distinct values
INSERT INTO request_timings
SELECT mod(i,1000), 100 * random()
 FROM generate_series(1, 10_000_000) s(i);

VACUUM ANALYZE request_timings;

-- calculate median and 95th percentile for each "method"
SELECT req_method,
 percentile_cont(ARRAY[0.5, 0.95]) WITHIN GROUP (ORDER BY req_time)
FROM request_timings GROUP BY req_method;

FOSDEM PGDay 2026

https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

percentile_cont / percentile_disc
https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

 QUERY PLAN

--

 GroupAggregate (cost=1658507.15..1733518.60 rows=1000 width=36)

 Group Key: req_method

 -> Sort (cost=1658507.15..1683506.80 rows=9999860 width=12)

 Sort Key: req_method

 -> Seq Scan on request_timings (cost=0.00..154053.60 rows=9999860 width=12)

(5 rows)

Time: 3693.776 ms

FOSDEM PGDay 2026

https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

percentile_cont / percentile_disc
https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

 QUERY PLAN

--

 GroupAggregate (cost=431168.44..1678509.89 rows=1000 width=36)

 Group Key: req_method

 -> Gather Merge (cost=431168.44..1628498.09 rows=9999860 width=12)

 Workers Planned: 4

 -> Sort (cost=430168.39..436418.30 rows=2499965 width=12)

 Sort Key: req_method

 -> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(7 rows)

Time: 2869.319 ms (serial: 3693.776 ms)

FOSDEM PGDay 2026

https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

percentile_cont / percentile_disc
https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

 QUERY PLAN

--

 GroupAggregate (cost=431168.44..1678509.89 rows=1000 width=36)

 Group Key: req_method

 -> Gather Merge (cost=431168.44..1628498.09 rows=9999860 width=12)

 Workers Planned: 4

 -> Sort (cost=430168.39..436418.30 rows=2499965 width=12)

 Sort Key: req_method

 -> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(7 rows)

Time: 2869.319 ms (serial: 3693.776 ms)

THIS IS NOT THE RIGHT SORT!

FOSDEM PGDay 2026

https://www.postgresql.org/docs/current/functions-aggregate.html#FUNCTIONS-ORDEREDSET-TABLE

sketches / digests

FOSDEM PGDay 2026

What are sketches?

● simplified representation of the data
○ estimates, not exact answers
○ construction depends on purpose
○ some based on probability observations (hll counters)

● incremental building
○ enough to see data points once (stream processing)

● advanced features
○ "merging" of sketches (parallelism, filtering)

● percentile sketches
○ trivial sketch: MCV
○ state of the art: t-digest, ddsketch

FOSDEM PGDay 2026

sketch examples

● hyperloglog [https://github.com/citusdata/postgresql-hll]
○ approximates COUNT(DISTINCT x)
○ similar capabilities, probabilistic foundation

● OpenHistogram
○ https://openhistogram.io/

● HdrHistogram
○ https://github.com/HdrHistogram/HdrHistogram

● count-min sketch
○ ...

● omnisketch
○ ...

FOSDEM PGDay 2026

https://github.com/citusdata/postgresql-hll
https://openhistogram.io/
https://github.com/HdrHistogram/HdrHistogram

The "traditional" calculation

data sort sorted data calculate

Calculation with sketches

data build sketch calculate

Calculation with sketches

data build sketch

store

Calculation with sketches

data build sketch

store

calculate

Calculation with sketches

data build sketch

store

calculate

percentiles vs. histograms

FOSDEM PGDay 2026

PDF

CDF

PDF

CDF

equi-width

PDF

CDF

equi-width

equi-depth

PDF

CDF

equi-width

equi-depth

PDF

CDF

equi-width

equi-depth

~ddsketch

~t-digest

t-digest

FOSDEM PGDay 2026

t-digest [https://github.com/tvondra/tdigest]

- 2019 paper by Ted Dunning, Otmar Ertl

Computing Extremely Accurate Quantiles Using t-Digests
https://github.com/tdunning/t-digest

- basic idea: clustering / centroids
- represent data as "centroids" - pairs (value, count)
- centroid ~ histogram bin
- accumulate data until some space limit
- merge centroids in a way that "maximizes" resolution

FOSDEM PGDay 2026

https://github.com/tvondra/tdigest
https://github.com/tdunning/t-digest

t-digest

FOSDEM PGDay 2026

20 values, let's build 5 bins

in practice:
millions of points
hundreds of bins

t-digest

FOSDEM PGDay 2026

simple: equi-width bins

t-digest

FOSDEM PGDay 2026

simple: equi-width bins

(centroids are red)

t-digest

FOSDEM PGDay 2026

advanced: smaller bins on tails

(better accuracy ~0.0 and ~1.0)

t-digest - 10M values, uniform [0, 1]

FOSDEM PGDay 2026

t-digest example

SELECT req_method,

 tdigest_percentile(tdigest(req_time, 100), array[0.5, 0.95])

FROM request_timings GROUP BY req_method;

 QUERY PLAN

--

 HashAggregate (cost=204052.90..204065.40 rows=1000 width=36)

 Group Key: req_method

 -> Seq Scan on request_timings (cost=0.00..154053.60 rows=9999860 width=12)

(3 rows)

Time: 2565.322 ms (percentile_cont: 3693.776 ms)

FOSDEM PGDay 2026

t-digest example

SELECT req_method,
 tdigest_percentile_of(tdigest(req_time, 100), array[50.0, 95.0])
FROM request_timings GROUP BY req_method;

 QUERY PLAN
--
 Finalize GroupAggregate (cost=92616.86..93138.30 rows=1000 width=36)
 Group Key: req_method
 -> Gather Merge (cost=92616.86..93095.80 rows=4000 width=36)
 Workers Planned: 4
 -> Sort (cost=91616.80..91619.30 rows=1000 width=36)
 Sort Key: req_method
 -> Partial HashAggregate (cost=91554.48..91566.98 rows=1000 width=36)
 Group Key: req_method
 -> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)
(9 rows)

Time: 967.469 ms (percentile_cont: 2869.319 ms)

FOSDEM PGDay 2026

t-digest

● result depends on data ordering
○ can be a problem for "weird" data (e.g. perfectly correlated / sorted)

○ more a batch/reporting problem, not for user requests

● result depends on parallelism
○ workers see different subsets of data on each run

○ different partial results in workers, similar to ordering

● inherently not deterministic
○ unless you fix the ordering / parallelism

○ surprising, makes testing harder

FOSDEM PGDay 2026

● doesn't have reliable error guarantees
○ "rank error" guarantee for strongly ordered case

○ breaks due to "weak ordering" of merged digest (overlapping centroids)

○ but merging also allows parallelism, precalculation, incremental builds

○ works well in practice, though (good empirical results)

● "rank error" is not the right error
○ it's pretty much the "opposite" of what users need

t-digest

FOSDEM PGDay 2026

ddsketch

FOSDEM PGDay 2026

ddsketch [https://github.com/tvondra/ddsketch]

- 2019 VLDB paper by Datadog (real-time monitoring SaaS)

DDSketch: A Fast and Fully-Mergeable Quantile Sketch with Relative-Error Guarantees

https://www.vldb.org/pvldb/vol12/p2195-masson.pdf

- DDSketch = Distributed Distribution Sketch
- ... but also the company is called "Datadog" ;-)

- very different approach (from t-digest)
- limits relative error (this guides the design)

- deterministic, buckets determined by ɑ-accuracy

FOSDEM PGDay 2026

https://github.com/tvondra/ddsketch
https://www.vldb.org/pvldb/vol12/p2195-masson.pdf

ddsketch

FOSDEM PGDay 2026

0 100

0.90 percentile?

goal:
● non-overlapping bins
● guarantee that

|E(X) - X| <= αX

90

ddsketch

FOSDEM PGDay 2026

0 100

0.95 percentile?

goal:
● non-overlapping bins
● guarantee that

|E(X) - X| <= αX

90
90 / (1 + α) 90 / (1 - α)

ddsketch

FOSDEM PGDay 2026

0 100

0.95 percentile?

goal:
● non-overlapping bins
● guarantee that

|E(X) - X| <= αX

90
90 / (1 + α) 90 / (1 - α)

10
10/(1 + α) 10/(1 - α)

ddsketch - 10M values, uniform [0, 100]

FOSDEM PGDay 2026

ddsketch example

SELECT req_method,

 ddsketch_percentile(ddsketch(req_time, 0.05, 1024), array[0.5, 0.95])

FROM request_timings GROUP BY req_method;

 QUERY PLAN

--

 HashAggregate (cost=204052.90..204065.40 rows=1000 width=36)

 Group Key: req_method

 -> Seq Scan on request_timings (cost=0.00..154053.60 rows=9999860 width=12)

(3 rows)

Time: 1932.321 ms (percentile_cont: 3693.776 ms, t-digest: 2565.322 ms)

FOSDEM PGDay 2026

ddsketch example
SELECT req_method,

 ddsketch_percentile(ddsketch(req_time, 0.05, 1024), array[0.5, 0.95])

FROM request_timings GROUP BY req_method;

 QUERY PLAN

--

 Finalize GroupAggregate (cost=92616.86..93138.30 rows=1000 width=36)

 Group Key: req_method

 -> Gather Merge (cost=92616.86..93095.80 rows=4000 width=36)

 Workers Planned: 4

 -> Sort (cost=91616.80..91619.30 rows=1000 width=36)

 Sort Key: req_method

 -> Partial HashAggregate (cost=91554.48..91566.98 rows=1000 width=36)

 Group Key: req_method

 -> Parallel Seq Scan on request_timings (cost=0.00..79054.65 rows=2499965 width=12)

(9 rows)

Time: 490.612 ms (percentile_cont: 2869.319 ms, t-digest: 967.469 ms)

FOSDEM PGDay 2026

precalculation

FOSDEM PGDay 2026

● OLAP - precalculate at fine granularity
○ still a significant compression
○ aggregate these precalculated results (fast)

● API response times
○ pre-aggregate per-minute digests (incremental)
○ fast dashboards with 1h windows + drill down

● also in distributed / monitoring systems
○ remote system aggregates into sketch
○ transmits small sketch instead of full raw event stream

precalculation

FOSDEM PGDay 2026

precalculation: ddsketch

CREATE TABLE request_sketches AS

SELECT req_method,

 ddsketch(req_time, 0.05, 1024) AS s

FROM request_timings GROUP BY req_method;

 List of relations

 Schema | Name | Type | Owner | Persistence | Access method | Size

--------+------------------+-------+-------+-------------+---------------+---------

 public | request_sketches | table | user | permanent | heap | 1544 kB

 public | request_timings | table | user | permanent | heap | 422 MB

(2 rows)

FOSDEM PGDay 2026

precalculation: ddsketch

SELECT

 ddsketch_percentile(ddsketch(s), array[0.5, 0.95])

FROM request_sketches WHERE req_method IN (1,2,3);

 QUERY PLAN

 Aggregate (cost=205.76..205.77 rows=1 width=32)

 -> Seq Scan on request_sketches (cost=0.00..205.75 rows=3 width=1260)

 Filter: (req_method = ANY ('{1,2,3}'::integer[]))

(3 rows)

 Execution Time: 0.932 ms

FOSDEM PGDay 2026

conclusions

FOSDEM PGDay 2026

● sketches are a great & general idea!
○ Who says you can't design a sketch for other things?
○ hyperloglog, count-min, omnisketch

● powerful approach
○ estimate is often good enough (it's a trade-off)
○ merging allows parallelizing / precalculating

● t-digest/ddsketch
○ CDF approximation = form of a histogram
○ accuracy guarantees
○ can answer other questions (averages, percentile-of, ...)

conclusions

FOSDEM PGDay 2026

● Small Summaries for Big Data / Graham Cormode, Ke Yi
https://www.cambridge.org/core/books/small-summaries-for-big-data/B41310C236A3D3574C273C42B71F35A4

● Apache DataSketches
https://datasketches.apache.org/

● count-min sketch
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch

● DDSketch: A fast and fully-mergeable quantile sketch with relative-error
guarantees
https://arxiv.org/abs/1908.10693

● UDDSketch: Accurate Tracking of Quantiles in Data Streams
https://arxiv.org/abs/2004.08604

● Computing Extremely Accurate Quantiles Using t-Digests
https://arxiv.org/abs/1902.04023

sources

FOSDEM PGDay 2026

https://www.cambridge.org/core/books/small-summaries-for-big-data/B41310C236A3D3574C273C42B71F35A4
https://datasketches.apache.org/
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://arxiv.org/abs/1908.10693
https://arxiv.org/abs/2004.08604
https://arxiv.org/abs/1902.04023

Q & A

FOSDEM PGDay 2026

