
Dirk Krautschick
Nordic PG Day, 22 March 2022

Beyond PostgreSQL

The extensibility of PostgreSQL

ABOUT ME…

HALLO, GRÜEZI, HI!

DIRK KRAUTSCHICK

▪ since 03/2019 @Trivadis, Germany, Düsseldorf

▪ PostgreSQL & Oracle, Trainer

▪ 13 years DBA & Consulting

▪ Married, 2 Junior DBAs

▪ Mountainbike, swimming, movies, hifi/home cinema

3

@d33_k4y

https://twitter.com/Trivadis
https://www.youtube.com/user/TrivadisAG
https://www.linkedin.com/company/trivadis/
https://www.trivadis.com/en
mailto:dirk.krautschick@trivadis.com
https://www.linkedin.com/in/dirk-krautschick/
tel:+49%20211%2058666%204720

ABOUT US…

TRIVADIS & ACCENTURE: #1 FOR DATA & AI5

▪ Together we are 1500 specialists at 34 locations in

Switzerland, Germany and Austria with a focus on Data &

Applied Intelligence.

▪ Together we support you in the intelligent end-to-end use

of your data.

▪ We cover the entire spectrum: from the development and

operation of data platforms and solutions, to the

refinement of data as well as consulting and training.

▪ We achieve this through the unique combination of Trivadis'

technological expertise and Accenture's strategic know-how

in the field of data.

6

WARM UP

WARM UP7
THE IDEA

▪ Basic core RDMBS

▪ Open for more functionality with extensions

▪ Standardized Interface

▪ Open and easy implementation

WARM UP8
BEING LEIGHTWEIGHT

▪ Individual set of features

o Per database

▪ Only functionality which is really needed

▪ Benefit of a slight installation

WARM UP9
BEING LEIGHTWEIGHT

RDBMS SOFTWARE DEFAULT DATABASE

Oracle 19.7 10 GB 6.1 GB

MySQL 8.0 182 MB 173 MB

MariaDB 10.3 122 MB 122 MB

MS SQL Server 2019 1,1 GB 90 MB

PostgreSQL 13.2 29 MB 43 MB

WARM UP10
THE POSSIBILITIES

▪ Special SQL functions, collections or views

▪ Additional functionalities

▪ Feature variations

▪ Further ideas like

o Alternative storage engines

11

Exensions insight

EXTENSION INSIGHT12
LOCATION

postgres@localhost /usr/pgsql-14]# tree

.

├── bin

├── doc

├── include

├── lib

│ ├── pg_stat_statements.so

│ ├── …

└── share

├── contrib

├── extension

│ ├── pg_stat_statements--1.4.sql

│ ├── pg_stat_statements.control

│ ├── plpgsql--1.0.sql

│ ├── plpgsql.control

│ ├── trivadis_extension--1.0.sql

│ ├── trivadis_extension.control

…

▪ Located in PostgreSQL software folder

o Depending on OS distribution

▪ Subfolder ./share/extension

▪ Subfolder ./lib

EXTENSION INSIGHT13
COMPONENTS

▪ Control file

o trivadis_extension.control

▪ Meta information

▪ Trusted Extensions

o Since version 13

o Activation for non superuser

trivadis extension

comment = 'example'

default_version = '1.0’

relocatable = true

trusted = true

EXTENSION INSIGHT14
COMPONENTS

▪ SQL Script

o trivadis_extension--1.0.sql

▪ Some functionality

CREATE FUNCTION trivadis_extension()

RETURNS text

LANGUAGE plpgsql

AS $$

DECLARE

some_text varchar := ' stop war! ';

BEGIN

RETURN(some_text);

END;

$$;

EXTENSION INSIGHT15
DISCLAIMER

I’M NOT A DEVELOPER ☺

EXTENSION INSIGHT16
COMPONENTS

▪ Extension Building Interface

o PGXS

▪ Install postgresql-devel package

▪ Using a Makefile

EXTENSION = trivadis_extension

DATA = trivadis_extension--1.0.sql

PG_CONFIG = pg_config

PGXS := $(shell $(PG_CONFIG) --pgxs)

include $(PGXS)

EXTENSION INSIGHT17
IMPLEMENTATION

▪ Implementation in other languages

▪ e.g. C for better performance

▪ Same file structure, same control file

▪ Modules entry in makefile

EXTENSION = trivadis_extension

DATA = trivadis_extension--1.0.sql

MODULES = trivadis_extension

PG_CONFIG = pg_config

PGXS := $(shell $(PG_CONFIG) --pgxs)

include $(PGXS)

EXTENSION INSIGHT18
IMPLEMENTATION

#include "postgres.h"

#include "fmgr.h"

#include "utils/builtins.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(trivadis_extension);

Datum

trivadis_extension(PG_FUNCTION_ARGS)

{

PG_RETURN_TEXT_P(" stop war! ");

}

CREATE FUNCTION trivadis_extension()

RETURNS text

AS '$libdir/trivadis_extension'

LANGUAGE C;

▪ trivadis_extension.c ▪ trivadis_extension- -1.0.sql

EXTENSION INSIGHT19
IMPLEMENTATION

▪ Installation

$ ls -alh

-rw-r--r--. 1 root root 94 Dec 20 12:18 trivadis_extension--1.0.sql

-rw-r--r--. 1 root root 217 Dec 21 16:10 trivadis_extension.c

-rw-r--r--. 1 root root 67 Dec 21 01:15 trivadis_extension.control

$ make

...

$ make install

$ psql

...

postgres=# create extension trivadis_extension;

CREATE

20

Extension sources

EXTENSION SOURCES
FIND THE EXTENSIONS

21

▪ Don’t reinvent the wheel

▪ Several sources

o Contrib package

o PostgreSQL Extension Network (PGXN)

o Everywhere else…google, git, …

EXTENSION SOURCES
CONTRIB

22

▪ Official community maintained set of extensions

▪ Same repository like official PostgreSQL packages

▪ Around 49 included extensions

EXTENSION SOURCES
PGXN

23

▪ PostgreSQL Extension Network (PGXN)

▪ https://pgxn.org/

▪ Over 330 extensions

▪ Additional tools for building and testing extension

▪ PGXN client to manage extension installations

https://pgxn.org/

EXTENSION SOURCES
INSTALLATION

24

▪ With package manager (Repositories, rpm, deb, etc.)

▪ Self-compiling of source code

▪ For Windows User

o Only self compiling or

o Stack Builder (by EDB)

EXTENSION SOURCES
WHAT‘S ABOUT CLOUD?

25

▪ With IaaS no issue, of course ☺

▪ Extensions available for DBaaS

o Depending on the offer of the cloud vendor

o At least for Azure, AWS and Google a good selection

▪ Mostly extensions out of contrib

26

Extension handling

EXTENSION HANDLING
MANAGING EXTENSIONS

27

▪ Extension has to be installed

▪ Simple activation/deactivation of extension per database
CREATE EXTENSION <extension_name>;

DROP EXTENSION <extension name> CASCADE;

▪ Configuration in postgresql.conf

o shared_preload_libraries (sometimes)

o Optional parameters per extension

EXTENSION HANDLING
MANAGING EXTENSIONS

28

▪ Modifying an extension (example)
ALTER EXTENSION <extension_name>

ADD VIEW <schema_name.view_name>;

▪ Updating an extension
ALTER EXTENSION <extension_name>

UPDATE TO <new_version>;

EXTENSION HANDLING
MANAGING EXTENSIONS

29

▪ Check for installed extensions

[local]:5432 postgres@postgres=# \dx

List of installed extensions

Name | Version | Schema | Description

---------+---------+------------+------------------------------

plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

EXTENSION HANDLING
MANAGING EXTENSIONS

30

[local]:5432 postgres@postgres=# select * from pg_available_extensions;

name | default_version | installed_version | comment

---------------+-----------------+-------------------+-----------------------------------

plpgsql | 1.0 | 1.0 | PL/pgSQL procedural language

adminpack | 2.1 | | administrative functions for PostgreSQL

…

pg_qualstats | 2.0.2 | | An extension collecting statistics…

powa | 4.1.2 | | PostgreSQL Workload Analyser-core

▪ Check for already installed and available extension

31

Cool Extension examples

COOL EXTENSION EXAMPLES32
ESSENTIAL EXAMPLES

▪ Plpgsql

o Procedural SQL functions (like pl/sql at Oracle DB)

o Alternative languages available as extensions

▪ Foreign Data Wrappers

o „Database Links“

o Postgres_fdw and file_fdw in contrib

o Many others (including oracle)

COOL EXTENSION EXAMPLES33
ESSENTIAL EXAMPLES

▪ pg_stat_statements

o Long term SQL query performance statistics

▪ pg_wait_sampling

o Long term WAIT_EVENT statistics

▪ pg_profile

o Snapshot based performance reports

COOL EXTENSION EXAMPLES34
FAMOUS EXAMPLES

▪ postGIS

o Support for spatial and geographical objects

▪ pgcrypto

o Cryptographicyl functions

COOL EXTENSION EXAMPLES35
SPECIAL EXAMPLES

▪ hstore

o Key/value datatype

▪ cstore_fdw

o Column store implementation

o Now part of Citus extension for distributed database

36

System architects
dilemma with Extensions

SYSTEM ARCHITECTS DILEMMA WITH EXTENSIONS37
DECISIONS

▪ Introducing extensions for whatever reasons is a challenge

▪ New component, change management, etc.

▪ Many discussions regarding new „software product“

▪ Cluster restart sometimes necessary 

SYSTEM ARCHITECTS DILEMMA WITH EXTENSIONS38
PROBLEMS

▪ Many several software components vs monolith?

o The need of evaluation/test

o Even if it is still just an addon to PostgreSQL

o The wish to have the all-in-one solution

▪ Pro Arguments

o Flexibility, lightweightness, tailored solution

o Don‘t over overestimate it as a large component

SYSTEM ARCHITECTS DILEMMA WITH EXTENSIONS39
PROBLEMS

▪ Sustainability, Future Developement

o Depending on this functionality

o How to make sure to get updates and new features?

▪ Pro Arguments

o Trust the open source mindset

o Anyhow, rely on established extensions only

o Possibilty to continue developement for your own

SYSTEM ARCHITECTS DILEMMA WITH EXTENSIONS40
PROBLEMS

▪ What about support

o Can extension be part of existing SLAs

o Is there any support from developer?

▪ Pro Arguments

o Some vendors are supporting several extensions

o Don‘t forget the community support

SYSTEM ARCHITECTS DILEMMA WITH EXTENSIONS41
OVERALL

▪ Often extensions are helpful but don‘t affect the system

o Support not that important

o Installation uncritical

o Deinstallation/deactivation quick and easy

▪ Some extension features are well expected to be in core

42

Final Words
and Discussion

FINAL WORDS43
CONCLUSION

▪ Extensions are very powerful

▪ …and often essential

▪ Base implementation is simple

▪ Many sources and already good ideas

▪ Use of extensions should be discussed early in projects

▪ Choose and prepare your own default selection

