
https://nexteam.co.ukchris@nexteam.co.uk

Advantage PostgreSQL

Chris Ellis - @intrbiz@bergamot.social

Let it help you!

PGDay Nordic 2024

https://nexteam.co.ukchris@nexteam.co.uk

Hello!
● I’m Chris

○ IT jack of all trades
● Using PostgreSQL ~18 years, across a range of projects:

○ A website search engine
○ UK postal address search, mapping
○ Service Directory
○ Monitoring
○ Smart Energy Analytics and IOT
○ TV, VoD catalogues
○ Booking / subscriptions

https://nexteam.co.ukchris@nexteam.co.uk

<3 PostgreSQL

https://nexteam.co.ukchris@nexteam.co.uk

SELECT * FROM audience WHERE …

https://nexteam.co.ukchris@nexteam.co.uk

Right Tool For The Job?

https://nexteam.co.ukchris@nexteam.co.uk

Architecture

VS

https://nexteam.co.ukchris@nexteam.co.uk

Queues

https://nexteam.co.ukchris@nexteam.co.uk

Queues - A Simple Queue

CREATE TABLE queue.event (
 hook_id UUID NOT NULL,
 created TIMESTAMP NOT NULL,
 updated TIMESTAMP ,
 status INTEGER NOT NULL,
 payload TEXT
);

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Fetch A Batch

SELECT ctid, * FROM queue.event
WHERE status < 5 AND (status = 0 OR
 updated < (now() - '1 hour'::INTERVAL))
ORDER BY created DESC
LIMIT 10
FOR UPDATE SKIP LOCKED;

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Index Time

CREATE INDEX queue_event_idx
ON queue.event (created)
WHERE status < 5;

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Fetch A Batch
 Limit
 (cost=0.29..0.86 rows=10 width=54)
 (actual time=0.060..0.114 rows=10 loops=1)
 -> LockRows
 (cost=0.29..4920.33 rows=86401 width=54)
 (actual time=0.057..0.109 rows=10 loops=1)
 -> Index Scan Backward using queue_event_idx on event
 (cost=0.29..4056.32 rows=86401 width=54)
 (actual time=0.037..0.060 rows=10 loops=1)
 Filter: ((status < 5) AND ((status = 0) OR
 (updated < (now() - '1 hour'::interval))))
Planning Time: 0.260 ms
Execution Time: 0.179 ms

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Retry An Event

UPDATE queue.event
SET updated = now(),
 status = status + 1
WHERE ctid = '(719,117)';

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Processed An Event

UPDATE queue.event
SET updated = now(),
 status = 2147483647
WHERE ctid = '(720,2)';

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Partitioning

CREATE TABLE queue.event (
 hook_id UUID NOT NULL,
 created TIMESTAMP NOT NULL,
 updated TIMESTAMP ,
 status INTEGER NOT NULL,
 payload TEXT
) PARTITION BY RANGE (created);

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Partitioning

CREATE TABLE queue.event_2024_01
 PARTITION OF queue.event
 FOR VALUES FROM ('2024-01-01') TO ('2024-02-01');

...

CREATE TABLE queue.event_2024_12
 PARTITION OF queue.event_2024_12
 FOR VALUES FROM ('2024-12-01') TO ('2025-01-01');

https://nexteam.co.ukchris@nexteam.co.uk

Queues - Partition Retention

ALTER TABLE queue.event_2024_01
 DETACH PARTITION queue.event;
-- Archive old partition?

COPY queue.event_2024_01
 TO ‘archive/events_2024_01;

DROP TABLE queue.event_2024_01;

https://nexteam.co.ukchris@nexteam.co.uk

Text Search

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple

CREATE TABLE search.content (
 entity_id UUID NOT NULL,
 entity_type TEXT NOT NULL,
 content TEXT NOT NULL,

vector TSVECTOR NOT NULL
);

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple

INSERT INTO search.content
VALUES (...,
 to_tsvector('english', 'Some pages
about Bridgnorth Library. Where you can
borrow books, while the politicians still
allow.')
);

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple

SELECT
 ts_rank_cd(vector, to_tsquery(…)), *
FROM search.content
WHERE vector @@ to_tsquery('english',
 'bridgnorth & library')
ORDER BY 1;

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple

CREATE INDEX content_ftx
ON search.content
USING GIN (vector);

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Tack On

CREATE TABLE bergamot.host (
 id UUID NOT NULL,
 hostname TEXT NOT NULL,
 summary TEXT ,
 description TEXT
);

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Tack On

CREATE INDEX host_text_idx
ON bergamot.host
USING GIN (to_tsvector('english',
 description));

https://nexteam.co.ukchris@nexteam.co.uk

Text Search - Simple

SELECT *
FROM bergamot.host
WHERE
 to_tsvector('english', description) @@
 to_tsquery('english', 'webserver');

https://nexteam.co.ukchris@nexteam.co.uk

GIS

https://nexteam.co.ukchris@nexteam.co.uk

Location Search

CREATE TABLE club.venue (
 Id UUID NOT NULL,
 name TEXT NOT NULL,
 description TEXT NOT NULL,

address TEXT NOT NULL,
 location POINT
);

https://nexteam.co.ukchris@nexteam.co.uk

Location Search

SELECT *
FROM club.venue
WHERE st_dwithin(location, my_location, 2000);

https://nexteam.co.ukchris@nexteam.co.uk

Data Modelling

https://nexteam.co.ukchris@nexteam.co.uk

Arrays

https://nexteam.co.ukchris@nexteam.co.uk

Tags

CREATE TABLE bergamot.host (
 id UUID NOT NULL,
 group_id UUID NOT NULL,
 hostname TEXT NOT NULL,
 …
 tags TEXT[] ,
);

https://nexteam.co.ukchris@nexteam.co.uk

Tags

SELECT *
FROM bergamot.host
WHERE tags @> ARRAY['web'];

SELECT *
FROM bergamot.host
WHERE tags @> ARRAY['web', 'app1'];

https://nexteam.co.ukchris@nexteam.co.uk

Tags

CREATE INDEX tags_idx
ON bergamot.host
 USING GIN (tags);

https://nexteam.co.ukchris@nexteam.co.uk

Roll Ups

CREATE TABLE iot.daily_reading (
 meter_id UUID NOT NULL,
 read_range DATERANGE NOT NULL,
 energy BIGINT,
 energy_profile BIGINT[],
 PRIMARY KEY (device_id, read_range)
);

https://nexteam.co.ukchris@nexteam.co.uk

Roll Ups
t_xmin t_xmax t_cid t_xvac t_ctid t_infomask

2
t_infomask t_hoff

4 4 4 4 6 2 2 1

24 bytes

device_id read_at temperature light

16 8 4 4

32 bytes

https://nexteam.co.ukchris@nexteam.co.uk

Going Over The Top

● Like with everything, there can be too much of a good thing
● In one DB design, is used arrays to capture all the many-to-many

relationships
● It worked pretty well in some ways
● But the lack of foreign keys was a bit of a nightmare
● It probably ended up being more hassle than just implementing all the

mapping tables.

https://nexteam.co.ukchris@nexteam.co.uk

Unknown Unknowns

https://nexteam.co.ukchris@nexteam.co.uk

Unknown Unknowns

CREATE TABLE insurance.quote (
 id UUID NOT NULL,
 customer_id UUID NOT NULL,
 status STATUS NOT NULL,
 price NUMERIC NOT NULL,
 answers JSONB
);

https://nexteam.co.ukchris@nexteam.co.uk

Unknown Unknowns

SELECT count(*),
 count(*) FILTER (WHERE (answers ->> 'locks')
 IS NULL),
 count(*) FILTER (WHERE (answers ->> 'locks')
 IS NOT NULL),
 count(*) FILTER (WHERE (answers ->> 'locks')
 = '3-level'),
 count(*) FILTER (WHERE (answers ->> 'locks')
 = 'unknown')
FROM insurance.quotes;

https://nexteam.co.ukchris@nexteam.co.uk

Stopping Things Going Wrong

https://nexteam.co.ukchris@nexteam.co.uk

Subscriptions

CREATE TABLE club.subscription (
 id UUID NOT NULL,
 member_id UUID NOT NULL,
 plan_id UUID NOT NULL,
 status STATUS NOT NULL,

…
);

https://nexteam.co.ukchris@nexteam.co.uk

Subscriptions

CREATE UNIQUE INDEX active_subs
ON club.subscription

(member_id)
WHERE status = 'active';

https://nexteam.co.ukchris@nexteam.co.uk

Problem Solving With SQL

https://nexteam.co.ukchris@nexteam.co.uk

Pulling Things Together

SELECT *
FROM search.content
WHERE vector @@ to_tsquery('library')
AND st_dwithin(location, my_location, 2000)
AND tags @> ARRAY['service_catalogue'];

https://nexteam.co.ukchris@nexteam.co.uk

Recursion

WITH RECURSIVE groups(id) AS (
 SELECT g.id FROM bergamot.group g
 WHERE g.id = <id>
 UNION
 SELECT g.id FROM bergamot.group g, groups gg
 WHERE g.parent_id = gg.id
)
SELECT id, bool_and(s.ok OR s.suppressed) AS ok
FROM groups
JOIN status s ON (s.id = groups.id);

https://nexteam.co.ukchris@nexteam.co.uk

Lateral Joins

SELECT h.*, q.*
FROM bergamot.hosts h
LEFT JOIN LATERAL (
 SELECT sampled, load_avg_5
 FROM metrics.cpu c
 WHERE c.host_id = h.id
 ORDER BY sampled DESC
 LIMIT 1
) q ON (true);

https://nexteam.co.ukchris@nexteam.co.uk

Writable CTEs

WITH invoice_commission AS (
 UPDATE billing.commission_record
 SET invoice_id = 123
 WHERE invoice_id IS NULL
 RETURNING *
) INSERT INTO billing.invoice
SELECT 123, current_date, sum(value) AS total
FROM invoice_commission;

https://nexteam.co.ukchris@nexteam.co.uk

Generate Series - Presenting Data
SELECT r.device_id, t.time, array_agg(r.read_at),
 avg(r.temperature), avg(r.light)
FROM generate_series(
 '2022-10-06 00:00:00'::TIMESTAMP,
 '2022-10-07 00:00:00'::TIMESTAMP, '10 minutes') t(time)
JOIN iot.alhex_reading r
 ON (r.device_id = '26170b53-ae8f-464e-8ca6-2faeff8a4d01'::UUID
 AND r.read_at >= t.time
 AND r.read_at < (t.time + '10 minutes'))
GROUP BY 1, 2
ORDER BY t.time;

https://nexteam.co.ukchris@nexteam.co.uk

Window Functions

https://nexteam.co.ukchris@nexteam.co.uk

Window Functions - Roll Up

SELECT
 commission AS daily_total,
 sum(commission) OVER
 (PARTITION BY date_trunc('week', day))
 AS weekly_total
FROM billing.daily;

https://nexteam.co.ukchris@nexteam.co.uk

Window Functions - Moving On Up

SELECT load_user, avg(load_user) OVER
 (ORDER BY day
 ROWS BETWEEN 2 PRECEDING
 AND CURRENT ROW)
 AS moving_average
FROM metrics.application_cpu;

https://nexteam.co.ukchris@nexteam.co.uk

Window Functions - Counters

SELECT
 day,
 energy,
 energy - coalesce(lag(energy)
 OVER (ORDER BY day), 0) AS consumed
FROM iot.meter_reading
ORDER BY day;

https://nexteam.co.ukchris@nexteam.co.uk

Mind The Gap

https://nexteam.co.ukchris@nexteam.co.uk

Custom Aggregates - Mind The Gap

WITH days AS (
 SELECT t.day::DATE
 FROM generate_series('2017-01-01'::DATE,
'2017-01-15'::DATE, '1 day') t(day)
), data AS (

SELECT *
FROM iot.meter_reading
WHERE day >= '2017-01-01'::DATE

 AND day <= '2017-01-15'::DATE
)

https://nexteam.co.ukchris@nexteam.co.uk

Custom Aggregates - Mind The Gap

SELECT day,
 coalesce(energy,
 (((next_read - last_read)
 / (next_read_time - last_read_time))
 * (day - last_read_time))
 + last_read) AS energy_interpolated
FROM (
 … from next slide …
) q
ORDER BY day

https://nexteam.co.ukchris@nexteam.co.uk

Custom Aggregates - Mind The Gap
 SELECT t.day, d.energy,

last(d.day) OVER lookback AS last_read_time,
last(d.day) OVER lookforward AS next_read_time,
last(d.energy) OVER lookback AS last_read,
last(d.energy) OVER lookforward AS next_read

 FROM days t
 LEFT JOIN data d ON (t.day = d.day)
 WINDOW

lookback AS (ORDER BY t.day),
lookforward AS (ORDER BY t.day DESC)

https://nexteam.co.ukchris@nexteam.co.uk

Custom Aggregates - Mind The Gap

CREATE FUNCTION last_agg(anyelement, anyelement)
RETURNS anyelement LANGUAGE SQL IMMUTABLE STRICT AS $$
 SELECT $2;
$$;

CREATE AGGREGATE last (
 sfunc = last_agg,
 basetype = anyelement,
 stype = anyelement
);

https://nexteam.co.ukchris@nexteam.co.uk

Any Questions?

https://nexteam.co.ukchris@nexteam.co.uk

Appendix - Mind The Gap
WITH days AS (
 SELECT t.day::DATE
 FROM generate_series('2017-01-01'::DATE, '2017-01-15'::DATE, '1 day') t(day)
), data AS (

SELECT *
FROM iot.meter_reading
WHERE day >= '2017-01-01'::DATE AND day <= '2017-01-15'::DATE

)
SELECT day, coalesce(energy_import_wh, (((next_read - last_read) / (next_read_time - last_read_time)) * (day -
last_read_time)) + last_read) AS energy_import_wh_interpolated
FROM (
 SELECT t.day, d.energy_import_wh,

last(d.day) OVER lookback AS last_read_time,
last(d.day) OVER lookforward AS next_read_time,
last(d.energy_import_wh) OVER lookback AS last_read,
last(d.energy_import_wh) OVER lookforward AS next_read

 FROM days t
 LEFT JOIN data d ON (t.day = d.day)
 WINDOW

lookback AS (ORDER BY t.day),
lookforward AS (ORDER BY t.day DESC)

) q ORDER BY q.day

