
JSONB AUDITS

PRO & CONTRA

Felix Kunde and Petra Sauer



2

WIR HABEN 
EINEN TRAUM –
DIE STAUFREIE 
STADT



3

Wirtschaftsatlas Berlin

In the GIS scene more and more users 
are interested in data curation. Data 

creation has been too cost-intensive to 
just throw it away. Plus, a view into the 
past is desirable to measure effects of 

location-based decision making



4

 Track all data changes in the database

 Revisit previous data versions

 Undo changes of certain write operations

 Work against multiple branches of a database

MOTIVATION



5

HOW TO AUDIT?
IN A RELATIONAL WAY

id type geom

1 car POINT(1 1)

2 bike POINT(1 2)

3 train POINT(2 2)

SET type = 'moto'

id type geom from until

1 car POINT(1 1) ts1

2 bike POINT(1 2) ts1 ts2

3 train POINT(2 2) ts1

2 moto POINT(1 2) ts2

AFTER

row-level trigger

HISTORY TABLE
(SHADOW TABLE)



6

 Easy to setup

 Easy to query the past

 Does not break apps

GOOD …
 What to do with DDL changes?

 Rely on timestamp fields?

 Store complete tuples?

, BUT …



7

T
O

O
LS

Tool Method Log type Revision

timetravel Audit Trail Extra Columns Timestamps

temporal_tables Audit Trail Shadow Tables Timestamps

table_version Audit Trail Shadow Tables UD revision

table_log Audit Trail Shadow Tables Trigger seq

audit_trigger Audit Trail Generic (hstore) Transactions

pgMemento Audit Trail Generic (jsonb) Transactions

CyanAudit Audit Trail Generic (pivot) Transactions

pgVersion Version Control Extra Columns UD revision

QGIS Versioning Version Control Extra Columns UD revision

GeoGig Version Control External (binary) UD revision

Flyway Migration External (SQL) UD revision

Liquibase Migration External (XML) UD revision

FOSS4G 2017 Talk: How to version my spatial database? > http://slides.com/fxku/foss4g17_dbversion



8

 Stop care about DDL changes

 Can be indexed, so queries are fast

 Store your JSON somewhere else

 *Everybody loves JSONB!!*

WHY AUDIT IN JSONB?



9



10

 Relies on transaction IDs, not timestamps

 Stores only deltas in the logs

 Has a powerful undo feature

WHAT IS DIFFERENT?



11

 When using JSONB everything could be stored in one log table

 pgMemento stores transaction and table event metadata in 

separate tables to facilitate the lookup for historic actions

 Less redundancy vs. higher logging overhead

LOG TABLES
Transaction Metadata Event Metadata Data log

(12)



12

DML-AUDITING
id type geom audit_id

1 car POINT(1 1) 2

2 bike POINT(1 2) 23

3 train POINT(2 2) 42

SET type = 'moto'

id txid …

… … …

10 2800000 …

id transaction_id op_id Table_operation table_relid

… … … … …

50 2800000 4 UPDATE 2005030

TRANSACTION_LOG TABLE_EVENT_LOG

BEFORE statement-level triggerinsert

insert

txid = 2800000

Surrogate Key
(as PK can cover
more columns)



13

DML-AUDITING
id type geom audit_id

1 car POINT(1 1) 2

2 moto POINT(1 2) 23

3 train POINT(2 2) 42

TRANSACTION

_LOG

TABLE

_EVENT

_LOG

AFTER

row-level trigger

id Event_id audit_id changes

… … … …

100 50 23 {"type":"bike"}

ROW_LOG

SELECT

event_id

FROM

table_event_log

WHERE

transaction_id = txid_current()

AND table_relid = 2005030

AND op_id = 4;

insert

Surrogate Key
as tracer



14

DDL-AUDITING
id type geom audit_id

1 car POINT(1 1) 2

2 moto POINT(1 2) 23

3 train POINT(2 2) 42

DROP type

event trigger at ddl_command_start

insert

TRANSACTION

_LOG

TABLE

_EVENT

_LOG

id Event_id audit_id changes

… … … …

200 75 2 {"type":"car"}

201 75 23 {"type":"moto"}

202 75 42 {"type":"train"}

ROW_LOG
insertinsert

txid = 2900000



15

DDL-AUDITING
id geom audit_id

1 POINT(1 1) 2

2 POINT(1 2) 23

3 POINT(2 2) 42

AUDIT_TABLE_LOG

event trigger at

ddl_command_end

id audit_table_id column_name data_type txid_range

… … … …

100 1 type text [2700000,2900000)

AUDIT_COLUMN_LOG

SELECT * FROM pg_event_trigger_ddl_commands()



16

FAST QUERIES POWERED BY GIN INDEX

SELECT DISTINCT

e.transaction_id

FROM

pgmemento.table_event_log e

JOIN

pgmemento.row_log r

ON r.event_id = e.id

WHERE 

r.audit_id = 23 

AND (r.changes ? 'type');

For which transactions column

'type' exists in the logs?

SELECT DISTINCT

audit_id

FROM

pgmemento.row_log

WHERE 

changes @> '{"type": "bike"}'::jsonb;

Which tuples once contained certain combinations

of key(s) and value(s)?

Imagine the whole tuple is stored every time.
More overhead on data processing.



17

TIME FOR PAIN

RESTORE PREVIOUS
VERSIONS OF TUPLES



18

THE LIFE OF A TUPLE

id name type Status Audit_id

NULL 10

{"status":„hello world"} 10

{"name":"foo", "status":"alone"} 10

{"type":"phd"} 10

{Id:1, "name":"bar", "type":"prof", "status":"happy"} 10

BIRTH

GROWING UP

MARRIAGE

WISDOM

DEATH

T
im

e
 /

 t
ra

n
s
a

c
ti
o
n
s



19

HOW WAS LIFE BEFORE MARRIAGE?

id name type Status Audit_id

NULL 10

{"status":„hello world"} 10

{"name":"foo", "status":"alone"} 10

{"type":"phd"} 10

{Id:1, "name":"bar", "type":"prof", "status":"happy"} 10

BIRTH

GROWING UP

MARRIAGE

WISDOM

DEATH

T
im

e
 /

 t
ra

n
s
a

c
ti
o
n
s

Uh oh, where is the log?!



20

 Concat all JSONB logs in reverse order

 Starting from recent state (or delete event) 

until requested point in time

 JSONB trick: duplicate keys get overwritten

 Too much overhead, if history is long

STRATEGY 1:

ROLLING BACK



21

 Check audit_column_log

 For each column find the first entry in logs

after requested point in time

 Feed result to jsonb_build_object

 Produces giant queries, but still quite fast

STRATEGY 2:

JSONB QUERIES



22

RESTORE – PART 3
SELECT 

p.* 

FROM 

generate_log_entries(1,2800000,'my_table') entries

LATERAL (

SELECT 

*

FROM

jsonb_populate_record(

null::my_table,

entries

)

) p;

Works only with a template. Could be the
actual table, but to be correct in case of
any DDL changes, a temporary template
can be created on the fly with information
from audit_column_log.



23



24

 … why would you use JSONB anyway then?

 Relational is faster and easier

 Takes up more space on your disk

 Your app might not like it

WELL…



25

 Query all changes and referenced events for a given

txid (or range of txids) in reverse order

 Loop over result set and perform the opposite event

 Consider dependencies between tables in order to

avoid foreign key violations

REVERT



26

REVERT
op_id Event Reverse Event Log Content

1 CREATE TABLE DROP TABLE -

2 ALTER TABLE ADD COLUMN ALTER TABLE DROP COLUMN -

3 INSERT DELETE NULL

4 UPDATE UPDATE Changed fields of changed rows

5 ALTER TABLE ALTER COLUMN ALTER TABLE ALTER COLUMN All rows of altered columns

6 ALTER TABLE DROP COLUMN ALTER TABLE ADD COLUMN All rows of deleted columns

7 DELETE INSERT All fields of deleted rows

8 TRUNCATE INSERT All fields of table

9 DROP TABLE CREATE TABLE All fields of table (logged as truncate)



27

 Updates are pretty easy to setup (ok we could

produce deltas also here and not during trigger phase)

 Could lead to a branching concept …

 What about long running transactions? (typical

GIS workflows – many edits, commit once)

JSONB > QUERIES



28

 Branching concept

 Log tables for more DB objects

 Extending the test suite

 Maybe: Logical decoding instead of triggers

TO DOS



29

PERFORMANCE

Kunde F., Sauer P. (2017) pgMemento – A Generic Transaction-Based Audit Trail for Spatial Databases. In: Gertz M. et al. (eds) Advances in 

Spatial and Temporal Databases. SSTD 2017. Lecture Notes in Computer Science, vol 10411. Springer, Cham



30

 Written entirely in PL/pgSQL

 Requires at least PostgreSQL 9.5

 Repo: github.com/pgmemento

 LGPL v3 Licence

TECHNICAL
DETAILS



Felix Kunde

fkunde[at]beuth-hochschule.de

Petra Sauer

Sauer[at]beuth-hochschule.de
QUESTIONS?

Funded by:


