Running a managed service on
Kubernetes and PostgreSQL

What we learned at Timescale

Oleksii Kliukin

2=
\@S)/ Timescale PostgreSQL Conference German y, Leipzig

TimescaleDB hypertable

Extend the database with TimescaleDB

CREATE EXTENSION IF NOT EXISTS timescaledb;

Create a regular table

CREATE TABLE IF NOT EXISTS metrics (
time TIMESTAMP WITHOUT TIME ZONE NOT NULL,
device_id INT,
cpu double NULL

)5
Turn it into a hypertable

SELECT create_hypertable(‘metrics’, ‘time’);

Turn data into hypertable

INSERT INTO metrics
SELECT » FROM old_table

TimescaleDB hypertable chunks

SELECT create_hypertable(‘metrics’, ‘time’);

Distributed hypertables and multi-node

SELECT create_distributed_hypertable(‘metrics’, ‘time’, ‘device_1id);

C
&
R
A
S
W

There i1s more to TimescaleDB

* Transparent compression

» Continuous and real-time aggregates
» Data retention policies

* Advanced analytical functions

* Query performance improvements

@ 1 Architecture overview

()2 Challenges @

()3 Developer experience &

Ol

Architecture overview

TimescaleCloud
Project
13106_DB v

Usage: $z2 $0
Running: 4 services
Free trial: 45 days

(&) OleksiiKii.. >

Invitations
{é} Account
[—) Logout

D Docs

13106_DB ~
db-13108
CPU RAM
0.5 2 GB

Created 18 days ago

db-90530
CPU RAM
0.5 2 GB

Created 20 days ago

fork-db-13108
Forked from db-13108

CPU RAM
0.5 2 GB

Created a day ago

[SINGLE-NODE] ® Paused

Disk utilization Region

4% 390 MB of 10 GB us-east-1

[SINGLE-NODE | [o Running]

Disk utilization Region
4% 390 MB of 10 GB eu-central-1

SINGLE-NODE] [. Running]

Disk utilization Region

3% 350 MB of 10 GB us-east-1

db-22595
CPU RAM
0.5 2 GB

Created 4 minutes ago

db-multinode

Nodes CPU/node
Access nodes 1 1

Data nodes 3 1

Highest disk utilizations

n9bhugpzt1 1% 300 B of 50 B

h8ncp6éncv7 0% 300 1B of 75 6B

Created 7 minutes ago

Disk utilization

0
3% 270 MB of 10 GB

RAM/node
4 GB
4 GB

sOrz61vuOe

uyoryljwep

4 Create service

[SINGLE-NODE | [o Running]

Region

eu-west-1

| MULTI-NODE | [o Running]

Region

eu-west-1

(]
0% 300 1B of 75 6B

(]
0% 300 1B of 75 6B

TimescaleCloud

Project

13106_DB N

Usage: $z2 $0
Running: 4 services
Free trial: 45 days

(3) OleksiiKli.. >

Invitations

{é‘} Account

[—) Logout

D Docs

Create a service

G Choose your service type

@ Single-Node
(O Multi-Node

9 Name your service

db-80205

US East (N. Virginia) / us-east-1

Europe (Ireland) / eu-west-1
o US East (N. Virginia) / us-east-1
Europe (Frankfurt) / eu-central-1

US West (Oregon) / us-west-2

Scale later on

10 68 O
10 GB

Equivalent storage for uncompressed data: 170 6B ()

Create service

Pricing $6-053 $0/ hour

30-day trial

Compute $6-841 $0/ hour
Storage $6.612 $0/ hour

Monthly est. ®

Interactive demo. Deploy a service with
a demo dataset to learn more about
TimescaleDB.

$39 $0/ mo

TimescaleCloud

Project
13106_DB v Your service is being created! Service Information

We prepared a simple cheatsheet for you to get started. Download the
ﬁ Services instructions below as a .sq|l file:

R Members
Download the cheatsheet
D VPC

Username tsdbadmin

Service name db-80205

Password SR

(Y timescale-db-80205-credentials.sq

N

Connect to your service Store your service password now.

You won't be able to review it later, although you can
reset it at any time.

Install psql, then run

Usage: $z2 $0
Running: 4 services
Free trial: 45 days

psql "postgres://tsdbadmin Mgozn .uf7ql7pxzr.tsdb.cloud. timescale.com:38632/tsdb?sslmode=require"

Creating service
You can't connect while the deployment is in progress. Store your password to connect once your service is up and

running.
(3) OleksiiKli.. >

Invitations

o Create a hypertable

{é‘} Account
CREATE TABLE conditions (-- create a regular table
[—) Logout

time TIMESTAMPTZ NOT NULL,

location TEXT NOT NULL,

);

D Docs

1
2
3
4 temperature DOUBLE PRECISION NULL
5
6
7

SELECT create_hypertable('conditions', 'time'); -- turn it into a hypertable

e Insert data

1 INSERT INTO conditions
2 VALUES

3 (NOW(), 'office', 70.0),

fork-db-13108 ~ [e Rumning |

Forked from db-13108

J Overview (0 Explorer & Operations |~ Metrics = Logs o» Settings
.. Configuration

Connection info E How to connect 9
CPU RAM Disk storage Region
0.5 2 GB 10 GB us-east-1

Service URL postgres: //tsdbadmin@pfnjsvmysw.uf7ql7pXxz..

Database name tsdb Pricing

Host pfnjsvmysw.uf7ql7pxzr.tsdb.cloud. timescal.. Compute (hr) Storage (hr) Totalhourly Monthly (est) ©
$0.041 $0.012 $0.053 $39

Port 32252

Username tsdbadmin Usage

Disk utilization @
o/ | |
3% 350 MB of 10 GB

T Autoscaling enabled

Forked

Original service Date
db-13108 aday ago

TimescaleDB CR object

S kubectl get tsdb pgconfde

NAME STATUS AGE NODES VOLUME CPU MEMORY BACKUP
pgconfde Available 55d an 20G1 4 1G1 true

TimescaleDB Operator

reads/
upo(ad:es status

~—-—---—-_-——-

Inside pod

connection set‘vc&(e,nolpom‘t
- stores the leader | 1
- replica follows the leacler . routes to prim =

strep.mmg ?eplicad:ion

Patroni custom seripts,

Jecoupleol from docker image

Ba\ckups/ WAL

reads/
upolocte,s status

creates/ upolod’.e,s

/\ gRPC re,ques‘ts

oleplot/er << —

~__—

operator—

checks health/state

/ >
= Backup/ wals Deploynen‘t datobase

S3
Basckups/ WAL

-

ACkREST-.

— N ——— — — — — — — —
—— — —— — — — w— — — — — -

—

—

-~ - _—’
TSRS T e s e e s v e e e o o o o o e e e - e —

Deployer - Operator split

» Operator reconciles Kubernetes objects, is essentially

stateless.

* Deployer tracks the instance deployment events in a
management database and determines whether the
instance is ready by connecting to it and if necessary

provisioning extensions, roles and permissions.

» Deployer writes TSDB spec, operator only reads the spec

and updates the status.

Patroni managing Postgres container state

« Patroni is a template for Postgres HA written in Python

» Starts Postgres and keeps its state in a consistency layer
(Postgres endpoint)

» Takes the leader lock if available, becoming a primary

* Initializes replicas from S3

* Restarts Postgres after the pod bounce

* Recovers from S3 when the volume is lost

* No dependency on microservices

Kubernetes advantages

* Automatic reproducible deployments

» Labels and annotations on Kubernetes objects for testing
and safe production rollouts

* Informers and watches for availability checks and actions
on every running instance

* Resources configuration to provide a wide variety of CPU/
memory combinations, not limited by VM granularity

* Auto-recovery from crashes

Service recovery after failure

* Pod failure: failover or restart by a StatefulSet

* Persistent volume failure: point in time recovery from S3

» Accidental TSDB deletion: restore definition from management
database, point in time recovery from S3

» Complete loss of a Kubernetes cluster: restore management

DB from S3, restore all TSDBs as if they were deleted

02

Challenges

And solutions

OOM causes abrupt shutdown of PostgreSQL

* Timescale continuous/real-time aggregates may require a lot of

memory. Out of memory (OOM) when limits are set low is not

uncommon.
* OOM behavior assumed by PostgreSQL.:

ERROR: out of memory on a request of 1024 bytes

* Linux OOM killer: SIGKILL a random Postgres process
* A backend process is killed: disruption, restart of every connection

* A postmaster is killed: unclean shutdown, in extreme cases to

startup instance

OOM causes abrupt shutdown of PostgreSQL

$ kubectl get pod tinyforkv@l-an-0 -o json
jg '.spec.containers[0].resources'’
1
"Timits": {
"cpu'": "4",
"memory": "1Gi"
¥
"requests": {
"cpu'": "4",
"memory": "1Gi"
}
}

O
OM causes abrupt shutdown of PostgreSQL

A backend memory usage

.
.:‘:
ols,

P
*

x)
be

Pl
» -
ozc’u

Postmaster

N P A

- » o
oL &
KPS DM NI N 2 &
. - LG S . ‘. .' o~
! -
- - .0’0.':‘. .‘o’: A

PO IR
RIS

OOM causes abrupt shutdown of PostgreSQL

* Regular PostgreSQL: set memory overcommit, enable swap

* vm.overcommit_memory = 2
» Can'’t set it individually per container

* A node typically runs some pods (eg. daemonsets for logging)

incompatible with this setting

https://github.com/kubernetes/kubernetes/issues/90973

https://github.com/kubernetes/kubernetes/issues/90973

OOM causes abrupt shutdown of PostgreSQL

» Solution: OOMGuard library collects statistics on the memory
usage, overriding malloc

 Use LD_PRELOAD_LIBRARY to install it for Postgres
processes

« (Can just report statics, or actually block allocations going above
the predefined threshold, emulating regular malloc behavior

 OOM_GUARD_LIMIT threshold is derived from the container

memory limit, accounting for shared_buffers and OS overhead.

Wishlist

» PostgreSQL.: provide memory allocation hooks to do internal
accounting and deny allocations via extensions.

» Linux/Kubernetes: configure oom_adj_score and
vim_overcommit per cgroup on the Linux/Kubernetes layer.

* Improved debugging experience (locating debug symbols from

the container when running perf or gdb on the host)

Extension updates require a pod bounce

* New versions of Timescale extension are released regularly

* A new timescale-docker-ha image is built once the extension is
released

* We want to deliver latest extension (but not necessary auto-
upgrade) to our customers immediately

» Changing pod’s docker image requires a pod restart

* Planned customer downtime may only happen during

maintenance window, only a few times a year

Extension updates require a pod bounce

COPY (SELECT) TO P ROG"RAM 'ho‘t-Popﬁe“.' /\

ole_plov./ef

Postgres container

V

Postgre,s
binares

awndl

extensions L

copied by Inot-‘Porge

Bundle on S3

.....................

Extension updates require a pod bounce

Solution: hot-forge

A binary inside the container to fetch pre-packaged bundles and
put them in the container

The bundles are delivered using a postgres connection (COPY
TO PROGRAM)

The bundles are written to a persistent volume and linked to a
container filesystem

Mostly adding new data (although can potentially replace/delete

existing files in the container)

Wishlist

 Allow bouncing of individual containers in the pod and changing
the docker image

* Support “mutable” area inside the pod to deliver updates.

Challenges Etcd is a 5-nodes single point of failure
Operatlng Eth * Etcd is a core of the Kubernetes cluster

» Consists of multiple nodes (we run 5) - should be resilient?
« Can degrade on master node updates
* Performance issues (EBS burst balance, too many objects)

* Patroni dependency (no Kubernetes API - instances are read-

only)

Etcd is a 5-nodes single point of failure

 Solution: no silver bullet
 Many small clusters in each region instead of a single big one
* Etcd performance monitoring
* Fire drills on ephemeral clusters
 Solution: Patroni experimental static_primary mode:
* Enforce single primary by rejecting connections from other

nodes

Do not demote when Kubernetes API is not available

Wishlist

* Some operational instructions when Etcd is down

» Better observability inside Etcd

» Patroni “isolated” mode scalable to any number of pods

Encrypted EBS volumes

* New (1TB+) encrypted EBS volumes show an existing partition
marker (Atari partition)
» Kubernetes refuses to format them

* Pod is stuck at startup

A I S A i

7 S 7 ’
’ 4 N+ W Backspace Help 1| Undo 8 « W)
o > =" M~ A G B SRR < B B ¢ r)
i 2 = =
7 7 \
'(. ..‘.»'.-:1 \

F o oeeems
e @S

Big encrypted EBS volumes

» Solution: create a small 1GB encrypted volume

* Snapshot it into a “golden snapshot”

» Create new encrypted volumes from the golden snapshot

* Need to resize the filesystem in the init container (as per
Kubernetes 1.19)

* Recent fix by AWS: https://github.com/kubernetes/kubernetes/
issues/86064

https://github.com/kubernetes/kubernetes/issues/86064
https://github.com/kubernetes/kubernetes/issues/86064

Big encrypted EBS volumes

S kubectl get statefulset 10c1543j810-an | jq
' .spec.volumeClaimTemplates[0].spec'
{
"accessModes": [
"ReadWriteOnce"
1,
"dataSource": {
"apiGroup": "snapshot.storage.k8s.1i0",
"kind": "VolumeSnapshot",
"name": "golden-snapshot--wsboilgtlr"
I
"resources": {
"requests": {
"storage": "2500G1"

¥
}s
"storageClassName": "ebs-sc",
"volumeMode": "Filesystem"

Wishlist

Fewer bugs :-)

Improved support for VolumeSnapshots, e.g. provisioning
volumes across namespaces, resizing a filesystem when

provisioning from a snapshot

Volume size can only be increased, not decreased

 AWS EBS and other PersistentVolume implementations only
allow volume size increments.

* A volume autoscaler (Timescale service) may decide to
increase the volume upon a data ingestion

* When data is subsequently compressed the customer doesn't

need to pay for a bigger volume

data Inge,s‘tion

Volume size can only be increased, not decreased

» Solution: provide a functionality to fork a service

» Afork is a clone of a service with possibly different CPU and

storage specs

* Afork is implemented by restoring another instance from the

backup of the original one, taken from S3

Y/

Oﬁgiml service Or‘igina\l service
fork
Backups wal segments
S
Ba\ckups/WAL po?nt-in-time_-re,covery

Forks zoom-in (Patroni custom boostrap)

2 wal recovery
recovery_target_nome = '4'

L4
o
L d
L J
[4
[4
o
L3
[4
..
[4

noamed .
restore
pont 7

‘- S S 1: restore
o ' : : a base Ba\cku(o

wal

Wishlist

* Native volume downsize
» Kubernetes support, possibly with custom checks from K8s to
determine this is possible.

» Support for volume resizing in a statefulset

Not giving out postgres superuser
» Can easily leak into a container (i.e. COPY TO PROGRAM)

* Need to provide an admin user to:
e create other roles
e create extensions

* change some configuration parameters

Not giving out postgres superuser

 Admin user with CREATEROLE and CREATEDB

« CREATEROLE is too powerful:
« Example: GRANT pg_execute_server_program TO

adminuser

* Use ProcessUltility hooks to stop unwanted grants

* Allows “protecting” some roles from changes

tsdb=> GRANT pg_execute_server_program TO tsdbadmin

)

ERROR: tsdb_admin: insufficient permission to
administer any default roles including
"pg_execute_server_program"

HINT: Only superusers are allowed to administer

default roles

Installing extensions by non-superuser

* Whitelist extensions: https://github.com/dimitri/pgextwlist.git

» Similar to trusted extensions in v13
* Allows to list vetted extensions in guc
* Pre and post install-upgrade hooks to sanitize the DB

* Vulnerabilities checker: https://github.com/timescale/pgspot

https://github.com/dimitri/pgextwlist.git

Wishlist

» Deprecate superuser in PostgreSQL

%

111q1111111
N
—l .
N

| |
|
|
|
[|

o o o [

S S S S P
5 5 5 5 S S S S S R P
J 5 5 S 5 5 S S S I S R I
S 5 5 5 5 5 S S S S S P I
J 5 5 S A A R

-
=
-
-
~
-
-
~
~
=
-
-
'

-
~
-
-
-
-
-
~
~
~
-
-
-
-
-
~

-
'
-
~
'
'
~
-
'
'
-
~
~
'
-
-

03

Developer experience

Feature flags and deployment zones

Out-of-cluster dev mode

Local development with Kind?

* Possible in principle

* Poor observability

« Additional burden of supporting running locally
* Not 1:1 environment

» Can't test cloud-specific features (e.g EBS volume resize)

All the rest

* Deployer tests with actual database

* Operator tests in real Kubernetes environment

* Tests for the Docker image

* Dedicated dev environment

« CI/CD

* Can span new ephemeral Kubernetes cluster with only a couple of
commands

* Tracing, centralized log collection, graphs and alerts

* Hands-off mode for the operator to disable reconcile for a TSDB instance

Questions

oleksii@timescale.com
Twitter: @hintbits

Thank you!

#AlwaysBelLaunching

