
Running a managed service on
Kubernetes and PostgreSQL
What we learned at Timescale

PostgreSQL Conference Germany, Leipzig

Oleksii Kliukin

TimescaleDB hypertable
Extend the database with TimescaleDB

CREATE TABLE IF NOT EXISTS metrics (

 time TIMESTAMP WITHOUT TIME ZONE NOT NULL,

 device_id INT,

 cpu double NULL

);

CREATE EXTENSION IF NOT EXISTS timescaledb;

SELECT create_hypertable(‘metrics’, ‘time’);

INSERT INTO metrics

SELECT * FROM old_table

Create a regular table

Turn it into a hypertable

Turn data into hypertable

TimescaleDB hypertable chunks

SELECT create_hypertable(‘metrics’, ‘time’);

Distributed hypertables and multi-node

SELECT create_distributed_hypertable(‘metrics’, ‘time’, ‘device_id);

There is more to TimescaleDB

• Transparent compression
• Continuous and real-time aggregates
• Data retention policies
• Advanced analytical functions
• Query performance improvements

Agenda

01

02
03

Architecture overview 🏗

Challenges 🙃

Developer experience 😀

01
Architecture overview

Cloud DB
architecture

TimescaleDB CR object

$ kubectl get tsdb pgconfde 

NAME STATUS AGE NODES VOLUME CPU MEMORY BACKUP

pgconfde Available 55d an 20Gi 4 1Gi true

Cloud DB
architecture

TimescaleDB Operator

Cloud DB
architecture

Inside pod

Timescale cloud DB on Kubernetes / AWS

• Operator reconciles Kubernetes objects, is essentially
stateless. 

• Deployer tracks the instance deployment events in a
management database and determines whether the
instance is ready by connecting to it and if necessary
provisioning extensions, roles and permissions.

• Deployer writes TSDB spec, operator only reads the spec
and updates the status.

Cloud DB
architecture

Deployer - Operator split

Cloud DB
architecture

Patroni managing Postgres container state
• Patroni is a template for Postgres HA written in Python
• Starts Postgres and keeps its state in a consistency layer

(Postgres endpoint)
• Takes the leader lock if available, becoming a primary
• Initializes replicas from S3
• Restarts Postgres after the pod bounce
• Recovers from S3 when the volume is lost
• No dependency on microservices

Cloud DB
architecture

Kubernetes advantages
• Automatic reproducible deployments
• Labels and annotations on Kubernetes objects for testing

and safe production rollouts
• Informers and watches for availability checks and actions

on every running instance
• Resources configuration to provide a wide variety of CPU/

memory combinations, not limited by VM granularity
• Auto-recovery from crashes

• Pod failure: failover or restart by a StatefulSet
• Persistent volume failure: point in time recovery from S3
• Accidental TSDB deletion: restore definition from management

database, point in time recovery from S3
• Complete loss of a Kubernetes cluster: restore management

DB from S3, restore all TSDBs as if they were deleted

Cloud DB
architecture

Service recovery after failure

02
Challenges

And solutions

• Timescale continuous/real-time aggregates may require a lot of

memory. Out of memory (OOM) when limits are set low is not

uncommon.
• OOM behavior assumed by PostgreSQL: 

 

• Linux OOM killer: SIGKILL a random Postgres process
• A backend process is killed: disruption, restart of every connection
• A postmaster is killed: unclean shutdown, in extreme cases to

startup instance

Challenges
OOM killer

OOM causes abrupt shutdown of PostgreSQL

ERROR: out of memory on a request of 1024 bytes

Challenges
OOM killer

OOM causes abrupt shutdown of PostgreSQL

$ kubectl get pod tinyforkv01-an-0 -o json

jq '.spec.containers[0].resources'

{

 "limits": {

 "cpu": "4",

 "memory": "1Gi"

 },

 "requests": {

 "cpu": "4",

 "memory": "1Gi"

 }

}

Challenges
OOM killer

OOM causes abrupt shutdown of PostgreSQL

• Regular PostgreSQL: set memory overcommit, enable swap
• vm.overcommit_memory = 2

• Can’t set it individually per container
• A node typically runs some pods (eg. daemonsets for logging)

incompatible with this setting  
 
https://github.com/kubernetes/kubernetes/issues/90973

Challenges
OOM killer

OOM causes abrupt shutdown of PostgreSQL

https://github.com/kubernetes/kubernetes/issues/90973

• Solution: OOMGuard library collects statistics on the memory
usage, overriding malloc

• Use LD_PRELOAD_LIBRARY to install it for Postgres
processes

• Can just report statics, or actually block allocations going above
the predefined threshold, emulating regular malloc behavior

• OOM_GUARD_LIMIT threshold is derived from the container
memory limit, accounting for shared_buffers and OS overhead.

Challenges
OOM killer

OOM causes abrupt shutdown of PostgreSQL

• PostgreSQL: provide memory allocation hooks to do internal
accounting and deny allocations via extensions.

• Linux/Kubernetes: configure oom_adj_score and
vm_overcommit per cgroup on the Linux/Kubernetes layer.

• Improved debugging experience (locating debug symbols from
the container when running perf or gdb on the host)

Challenges
OOM killer

Wishlist

• New versions of Timescale extension are released regularly
• A new timescale-docker-ha image is built once the extension is

released
• We want to deliver latest extension (but not necessary auto-

upgrade) to our customers immediately
• Changing pod’s docker image requires a pod restart
• Planned customer downtime may only happen during

maintenance window, only a few times a year

Challenges
Fewer downtimes

Extension updates require a pod bounce

Challenges
Fewer downtimes

Extension updates require a pod bounce

• Solution: hot-forge
• A binary inside the container to fetch pre-packaged bundles and

put them in the container
• The bundles are delivered using a postgres connection (COPY

TO PROGRAM)
• The bundles are written to a persistent volume and linked to a

container filesystem
• Mostly adding new data (although can potentially replace/delete

existing files in the container)

Challenges
Fewer downtimes

Extension updates require a pod bounce

• Allow bouncing of individual containers in the pod and changing
the docker image

• Support “mutable” area inside the pod to deliver updates.

Challenges
Fewer downtimes

Wishlist

• Etcd is a core of the Kubernetes cluster
• Consists of multiple nodes (we run 5) - should be resilient?
• Can degrade on master node updates
• Performance issues (EBS burst balance, too many objects)
• Patroni dependency (no Kubernetes API - instances are read-

only)

Challenges
Operating Etcd

Etcd is a 5-nodes single point of failure

• Solution: no silver bullet
• Many small clusters in each region instead of a single big one
• Etcd performance monitoring
• Fire drills on ephemeral clusters
• Solution: Patroni experimental static_primary mode:
• Enforce single primary by rejecting connections from other

nodes
• Do not demote when Kubernetes API is not available

Challenges
Operating Etcd

Etcd is a 5-nodes single point of failure

• Some operational instructions when Etcd is down
• Better observability inside Etcd
• Patroni “isolated” mode scalable to any number of pods

Challenges
Operating Etcd

Wishlist

• New (1TB+) encrypted EBS volumes show an existing partition
marker (Atari partition)

• Kubernetes refuses to format them
• Pod is stuck at startup

Challenges
AWS bugs

Encrypted EBS volumes

• Solution: create a small 1GB encrypted volume
• Snapshot it into a “golden snapshot”
• Create new encrypted volumes from the golden snapshot
• Need to resize the filesystem in the init container (as per

Kubernetes 1.19)
• Recent fix by AWS: https://github.com/kubernetes/kubernetes/

issues/86064

Challenges
AWS bugs

Big encrypted EBS volumes

https://github.com/kubernetes/kubernetes/issues/86064
https://github.com/kubernetes/kubernetes/issues/86064

Challenges
AWS bugs

Big encrypted EBS volumes

$ kubectl get statefulset l0c154j810-an | jq
'.spec.volumeClaimTemplates[0].spec'

{

 "accessModes": [

 "ReadWriteOnce"

],

 "dataSource": {

 "apiGroup": "snapshot.storage.k8s.io",

 "kind": "VolumeSnapshot",

 "name": "golden-snapshot--wsboilqtlr"

 },

 "resources": {

 "requests": {

 "storage": "2500Gi"

 }

 },

 "storageClassName": "ebs-sc",

 "volumeMode": "Filesystem"

}

Challenges
AWS bugs • Fewer bugs :-)

• Improved support for VolumeSnapshots, e.g. provisioning
volumes across namespaces, resizing a filesystem when
provisioning from a snapshot

Wishlist

• AWS EBS and other PersistentVolume implementations only
allow volume size increments.

• A volume autoscaler (Timescale service) may decide to
increase the volume upon a data ingestion

• When data is subsequently compressed the customer doesn’t
need to pay for a bigger volume

Challenges
Volume resize

Volume size can only be increased, not decreased

• Solution: provide a functionality to fork a service
• A fork is a clone of a service with possibly different CPU and

storage specs
• A fork is implemented by restoring another instance from the

backup of the original one, taken from S3

Challenges
Volume resize

Volume size can only be increased, not decreased

Challenges
Volume resize

Forks zoom-in (Patroni custom boostrap)

• Native volume downsize
• Kubernetes support, possibly with custom checks from K8s to

determine this is possible.
• Support for volume resizing in a statefulset

Challenges
Volume resize

Wishlist

• Can easily leak into a container (i.e. COPY TO PROGRAM)
• Need to provide an admin user to:
• create other roles
• create extensions
• change some configuration parameters

Challenges
No superuser

Not giving out postgres superuser

• Admin user with CREATEROLE and CREATEDB
• CREATEROLE is too powerful:
• Example: GRANT pg_execute_server_program TO

adminuser
• Use ProcessUtility hooks to stop unwanted grants
• Allows “protecting” some roles from changes

Challenges
No superuser

Not giving out postgres superuser

tsdb=> GRANT pg_execute_server_program TO tsdbadmin
; 

ERROR: tsdb_admin: insufficient permission to
administer any default roles including
"pg_execute_server_program"

HINT: Only superusers are allowed to administer
default roles

• Whitelist extensions: https://github.com/dimitri/pgextwlist.git
• Similar to trusted extensions in v13
• Allows to list vetted extensions in guc
• Pre and post install-upgrade hooks to sanitize the DB
• Vulnerabilities checker: https://github.com/timescale/pgspot

Challenges
No superuser

Installing extensions by non-superuser

https://github.com/dimitri/pgextwlist.git

• Deprecate superuser in PostgreSQL

Challenges
No superuser

Wishlist

03
Developer experience

Developer
experience

Feature flags and deployment zones

Developer
experience

Out-of-cluster dev mode

Developer
experience

Local development with Kind?
• Possible in principle
• Poor observability
• Additional burden of supporting running locally
• Not 1:1 environment
• Can’t test cloud-specific features (e.g EBS volume resize)

Developer
experience

All the rest
• Deployer tests with actual database
• Operator tests in real Kubernetes environment
• Tests for the Docker image
• Dedicated dev environment
• CI/CD
• Can span new ephemeral Kubernetes cluster with only a couple of

commands
• Tracing, centralized log collection, graphs and alerts
• Hands-off mode for the operator to disable reconcile for a TSDB instance

Questions
oleksii@timescale.com
Twitter: @hintbits

Thank you!
#AlwaysBeLaunching

