
PostgreSQL Query Optimization

Step by step techniques

Ilya Kosmodemiansky (ik@dataegret.com)

Agenda 2

1. What is a slow query?
2. How to chose queries to optimize?
3. What is a query plan?
4. Optimization tools
5. Optimization examples

dataegret.com

Is this query slow? 3

QUERY PLAN
--
Limit (cost=12993.17..12993.17 rows=1 width=20) (actual time=606.385..606.385 rows=1 loops=1)
...
Planning time: 1.236 ms
Execution time: 607.057 ms

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?

• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP

• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?

• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

Does this query perform well enough for your system? 4

• What is your baseline?
• 607.057 ms can be extremely fast for OLAP
• But 607.057 ms * 10000 parallel queries on OLTP?
• 607.057 ms on 10 y.o. SATA disks vs modern SSD

dataegret.com

How to find the queries to optimize? 5

• Often it is useless to optimize all queries

• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review
• pg_stat_statements
Lot’s of useful stuff inside
• Monitoring system of choice
Hopefully it has query info accumulated and ranged

dataegret.com

How to find the queries to optimize? 5

• Often it is useless to optimize all queries
• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review

• pg_stat_statements
Lot’s of useful stuff inside
• Monitoring system of choice
Hopefully it has query info accumulated and ranged

dataegret.com

How to find the queries to optimize? 5

• Often it is useless to optimize all queries
• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review
• pg_stat_statements
Lot’s of useful stuff inside

• Monitoring system of choice
Hopefully it has query info accumulated and ranged

dataegret.com

How to find the queries to optimize? 5

• Often it is useless to optimize all queries
• log_min_duration_statement = 100ms
Everything that’s in the logs is due for review
• pg_stat_statements
Lot’s of useful stuff inside
• Monitoring system of choice
Hopefully it has query info accumulated and ranged

dataegret.com

How to find the queries to optimize? 6

dataegret.com

Which queries to optimize first? 7

SELECT sum(total_time) AS total_time,

sum(blk_read_time + blk_write_time) AS io_time,

sum(total_time - blk_read_time - blk_write_time) AS cpu_time,

sum(calls) AS ncalls,

sum(rows) AS total_rows

FROM pg_stat_statements

WHERE dbid IN (SELECT oid FROM pg_database WHERE datname=current_database())

dataegret.com

Which queries to optimize first? 8

WITH ttl AS (

SELECT sum(total_time) AS total_time, sum(blk_read_time + blk_write_time) AS io_time,

sum(total_time - blk_read_time - blk_write_time) AS cpu_time,

sum(calls) AS ncalls, sum(rows) AS total_rows

FROM pg_stat_statements WHERE dbid IN (

SELECT oid FROM pg_database WHERE datname=current_database())

)

SELECT *,(pss.total_time-pss.blk_read_time-pss.blk_write_time)/ttl.cpu_time*100 cpu_pct

FROM pg_stat_statements pss, ttl

WHERE (pss.total_time-pss.blk_read_time-pss.blk_write_time)/ttl.cpu_time >= 0.05

ORDER BY pss.total_time-pss.blk_read_time-pss.blk_write_time DESC LIMIT 1;

dataegret.com

Which queries to optimize first? 9

• Lot’s of metrics are possible to extract
• Requires time to come up with a good usable report
• DataEgret maintains it’s report in the public domain1

1
https://github.com/dataegret/pg-utils/blob/master/sql/global_reports/query_stat_total.sql

dataegret.com

https://github.com/dataegret/pg-utils/blob/master/sql/global_reports/query_stat_total.sql

Details of the report 10

• Report operates with total_time, io_time and cpu_time, that is a difference
of the first two
• Report also normalizes queries and calculates md5 hash for faster
processing
• Main part of the report includes only those entries, that (any of the
conditions qualifies):
1. used more than 1% of total CPU or total IO time
2. returned more than 2% of all rows
3. had been called more than 2% of all query executions

• all other queries are combined into the other group
• report orders queries by total time spent, longest at the top

dataegret.com

Details of the report 11

total time: 19:59:57 (IO: 16.43%)

total queries: 200,609,344 (unique: 2,342)

report for all databases, version 0.9.5 @ PostgreSQL 11.5 (Ubuntu 11.5-1.pgdg18.04+1)

tracking top 10000 queries, utilities off, logging 100ms+ queries

===

pos:1 total time: 05:38:45 (28.2%, CPU: 30.9%, IO: 14.5%) calls: 84,592,220 (42.17%) avg_time: 0.24ms (IO: 8.3%)

user: all db: all rows: 198,391,036 (24.34%) query:

other

===

pos:2 total time: 04:59:15 (24.9%, CPU: 24.0%, IO: 29.9%) calls: 5,610 (0.00%) avg_time: 3200.60ms (IO: 19.7%)

user: postgres db: --------- rows: 5,608,185 (0.69%) query:

WITH _deleted AS (DELETE FROM foos_2rm WHERE id IN (SELECT id FROM foos_2rm ORDER BY id LIMIT ?) RETURNING id)

DELETE FROM foos WHERE id IN (SELECT id FROM _deleted);

===

pos:3 total time: 00:45:06 (3.8%, CPU: 2.3%, IO: 11.1%) calls: 853,864 (0.43%) avg_time: 3.17ms (IO: 48.6%)

user: ---------_background db: --------- rows: 164,706 (0.02%) query:

SELECT "foo_stats_master".* FROM "foo_stats_master" WHERE (foo_stats_master.created_at >= ?) AND (foo_stats_master.created_at < ?)

AND "foo_stats_master"."action" IN (?, ?, ?, ?) AND ("foo_stats_master"."foo_board_id" IS NOT NULL)

AND "foo_stats_master"."user_ip_inet" = ? AND "foo_stats_master"."employer_id" = ?

ORDER BY "foo_stats_master"."created_at" DESC LIMIT ?

dataegret.com

So, we identified some queries to optimize 12

dataegret.com

So, we identified some queries to optimize 12

What comes next?

dataegret.com

EXPLAIN 13

• Any query can be prepended with EXPLAIN to see it’s execution plan
• EXPLAIN SELECT * FROM pg_database;

QUERY PLAN

Seq Scan on pg_database (cost=0.00..0.16 rows=6 width=271)

(1 row)

dataegret.com

What is execution plan? 14

• Query goes through several stages in it’s lifecycle
• 1. Connection

2. Parser
3. Rewrite system
4. Planner / Optimizer
5. Executor↔ [Workers]
6. Send results

• Planner prepares a plan for executor

dataegret.com

What is execution plan? 15

• It is a tree
• Nodes and operations on them
• Planner uses statistics to chose the optimal plan

dataegret.com

Details of EXPLAIN 16

EXPLAIN SELECT * FROM pg_database;

QUERY PLAN

Seq Scan on pg_database (cost=0.00..0.16 rows=6 width=271)

(1 row)

Seq Scan type of node operation
on pg_database object of node operation
cost=0.00..0.16 cost of the node

rows=6 estimated rows
width=271 average width of a row

dataegret.com

Types of node operations 17

• Seq Scan— sequential scan of whole relation
• Parallel Seq Scan— parallel sequential scan of whole relation
• Index Scan— targeted random IO (read index + read table)
• Index Only Scan— read only from index2

• Bitmap Index Scan— prepare a map of rows to read from relation,
possibly combining maps from several indexes
• Bitmap Heap Scan— use map from Bitmap Index Scan and read rows
from relation, always follows Bitmap Index Scan
• CTE Scan - read from Common Table Expression (WITH Block)
• Function Scan - read results, returned by a function

2https://wiki.postgresql.org/wiki/Index-only_scans

dataegret.com

https://wiki.postgresql.org/wiki/Index-only_scans

Cost of the node. Startup and total cost. 18

• A cost of fetching 8K block sequentially
• Cost is a relative value: a cost of 10 is 10× greater than a cost of 1

explain select * from posts order by id limit 5;

QUERY PLAN

--

Limit (cost=0.29..0.46 rows=5 width=28)

-> Index Scan using posts_pkey on posts (cost=0.29..347.29 rows=10000 width=28)

(2 rows)

• 0.29 + (347.29 - 0.29)*5/10000 = 0.4635

dataegret.com

Cost of the node. Startup and total cost. 18

• A cost of fetching 8K block sequentially
• Cost is a relative value: a cost of 10 is 10× greater than a cost of 1

explain select * from posts order by id limit 5;

QUERY PLAN

--

Limit (cost=0.29..0.46 rows=5 width=28)

-> Index Scan using posts_pkey on posts (cost=0.29..347.29 rows=10000 width=28)

(2 rows)

• 0.29 + (347.29 - 0.29)*5/10000 = 0.4635

dataegret.com

rows×width 19

• Rows × width of a root node gives a clue of a result size in bytes
• Even if the query is fast, lots of it’s calls can cause a huge traffic between
database and an application
• Thats why SELECT∗ is not a good idea

dataegret.com

Operations on nodes 20

• join – joins data from two nodes using appropriate join method
• sort – various methods of sorting
• limit – cuts the dataset off
• aggregate – performs aggregation
• hash aggregate – groups data
• unique – removes duplicates from sorted datasets
• gather – gather data from different workers

dataegret.com

Options of EXPLAIN command 21

EXPLAIN [ANALYZE] [VERBOSE] statement

EXPLAIN [(option [, ...])] statement

• ANALYZE executes statement and shows execution details
• VERBOSE verbose output
• COSTS show plan costs
• BUFFERS show information about buffers operated by the query
• TIMING show time spent
• SUMMARY show totals at the end of output
• FORMATTEXT |XML|JSON|YAML output in selected format

dataegret.com

Analyzing query 22

EXPLAIN (analyze) SELECT relname,relpages,reltuples FROM pg_class WHERE reltuples>10000;

QUERY PLAN

Seq Scan on pg_class (cost=0.00..5.55 rows=6 width=72) (actual time=0.069..0.073 rows=6 loops=1)

Filter: (reltuples > '10000'::double precision)

Rows Removed by Filter: 334

Planning time: 0.102 ms

Execution time: 0.087 ms

(5 rows)

actual time=0.069..0.073 startup and total time of node execution
rows=6 actual rows
loops=1 number of times node had been executed

Rows Removed by Filter: 334 node processing details

dataegret.com

A bit more complex query 23

EXPLAIN (analyze, buffers) SELECT r.relname, a.attname FROM pg_class r JOIN pg_attribute a ON a.attrelid=r.oid

WHERE a.attnum>0 AND NOT attisdropped;

QUERY PLAN

--

Hash Join (cost=8.95..66.58 rows=1770 width=128) (actual time=0.215..2.246 rows=2039 loops=1)

Hash Cond: (a.attrelid = r.oid)

Buffers: shared hit=59 read=2

I/O Timings: read=0.270

-> Seq Scan on pg_attribute a (cost=0.00..33.29 rows=1770 width=68) (actual time=0.009..1.148 rows=2039 loops=1)

Filter: ((NOT attisdropped) AND (attnum > 0))

Rows Removed by Filter: 587

Buffers: shared hit=46 read=2

I/O Timings: read=0.270

-> Hash (cost=4.70..4.70 rows=340 width=68) (actual time=0.198..0.198 rows=340 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 42kB

Buffers: shared hit=13

-> Seq Scan on pg_class r (cost=0.00..4.70 rows=340 width=68) (actual time=0.002..0.095 rows=340 loops=1)

Buffers: shared hit=13

Planning time: 0.202 ms

Execution time: 2.554 ms

(16 rows)

dataegret.com

Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know which query to optimize
• We have all the tools (EXPLAIN ANALYZE)

• Now we only need to minimize the time executor spends on each node
• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com

Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know which query to optimize
• We have all the tools (EXPLAIN ANALYZE)
• Now we only need to minimize the time executor spends on each node

• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com

Now we have all we need to optimize 24

• We know what we want in terms of performance
• We know which query to optimize
• We have all the tools (EXPLAIN ANALYZE)
• Now we only need to minimize the time executor spends on each node
• Or actually try to figure out what the query should do:
Never optimize a SQL-query itself, try to optimize the operation it
does

dataegret.com

Simplest B-tree indexing 25

EXPLAIN ANALYZE SELECT * FROM test WHERE val=10;
QUERY PLAN

Seq Scan on test (cost=0.00..160.59 rows=37 width=16) (actual time=0.036..1.640 rows=18 loops=1)
Filter: (val = 10)
Rows Removed by Filter: 8900

Planning time: 0.163 ms
Execution time: 2.037 ms
(5 rows)

dataegret.com

Simplest B-tree indexing 26

=> create index CONCURRENTLY test_val_idx on test using btree (val);

CREATE INDEX

=> EXPLAIN ANALYZE SELECT * FROM test WHERE val=10;

QUERY PLAN

--

Bitmap Heap Scan on test (cost=4.42..41.22 rows=18 width=16) (actual time=0.041..0.062 rows=18 loops=1)

Recheck Cond: (val = 10)

Heap Blocks: exact=12

-> Bitmap Index Scan on test_val_idx (cost=0.00..4.42 rows=18 width=0)

(actual time=0.033..0.033 rows=18 loops=1)

Index Cond: (val = 10)

Planning time: 1.136 ms

Execution time: 0.240 ms

(7 rows)

dataegret.com

Sort 27

explain analyze select distinct f1 from test_ndistinct ;

QUERY PLAN

Unique (cost=1571431.43..1621431.49 rows=100000 width=4)

(actual time=4791.872..7551.150 rows=90020 loops=1)

-> Sort (cost=1571431.43..1596431.46 rows=10000012 width=4)

(actual time=4791.870..6893.413 rows=10000000 loops=1)

Sort Key: f1

Sort Method: external merge Disk: 101648kB

-> Seq Scan on test_ndistinct (cost=0.00..135314.12 rows=10000012 width=4)

(actual time=0.041..938.093 rows=10000000 loops=1)

Planning time: 0.099 ms

Execution time: 7714.701 ms

dataegret.com

HashAggregate 28

set work_mem = '8MB';

SET

explain analyze select distinct f1 from test_ndistinct ;

QUERY PLAN

HashAggregate (cost=160314.15..161314.15 rows=100000 width=4)

(actual time=2371.902..2391.415 rows=90020 loops=1)

Group Key: f1

-> Seq Scan on test_ndistinct (cost=0.00..135314.12 rows=10000012 width=4)

(actual time=0.093..871.619 rows=10000000 loops=1)

Planning time: 0.048 ms

Execution time: 2396.186 ms

dataegret.com

DISTINCT authors 29

EXPLAIN (analyze) SELECT DISTINCT author_id FROM blog_post;

QUERY PLAN

Unique (cost=0.42..32912.78 rows=1001 width=4) (actual time=0.019..347.327 rows=1001 loops=1)

-> Index Only Scan using u_bp_author_ctime on blog_post (cost=0.42..30412.72 rows=1000020 width=4)

(actual time=0.018..268.112 rows=1000000 loops=1)

Heap Fetches: 0

Planning time: 0.068 ms

Execution time: 347.495 ms

(5 rows)

dataegret.com

Alternative: Loose index scan 30

EXPLAIN (analyze) WITH RECURSIVE t AS (
-- start from least author_id -- anchor
(SELECT author_id AS _author_id FROM blog_post ORDER BY author_id LIMIT 1)
UNION ALL
-- find the next author_id > "current" author_id -- iterator
SELECT author_id AS _author_id
FROM t, LATERAL (SELECT author_id FROM blog_post WHERE author_id>t._author_id
ORDER BY author_id LIMIT 1) AS a_id

)
-- return found values
SELECT _author_id FROM t;

dataegret.com

Alternative: Loose index scan 31

QUERY PLAN

CTE Scan on t (cost=52.27..54.29 rows=101 width=4) (actual time=0.017..11.176 rows=1001 loops=1)

CTE t

-> Recursive Union (cost=0.42..52.27 rows=101 width=4) (actual time=0.016..10.154 rows=1001 loops=1)

-> Limit (cost=0.42..0.46 rows=1 width=4) (actual time=0.015..0.015 rows=1 loops=1)

-> Index Only Scan using u_bp_author_ctime on blog_post (cost=0.42..30412.72 rows=1000020 width=4)

(actual time=0.014..0.014 rows=1 loops=1)

Heap Fetches: 0

-> Nested Loop (cost=0.42..4.98 rows=10 width=4) (actual time=0.009..0.010 rows=1 loops=1001)

-> WorkTable Scan on t t_1 (cost=0.00..0.20 rows=10 width=4) (actual time=0.000..0.000 rows=1 loops=1001)

-> Limit (cost=0.42..0.46 rows=1 width=4) (actual time=0.009..0.009 rows=1 loops=1001)

-> Index Only Scan using u_bp_author_ctime on blog_post blog_post_1 (cost=0.42..10973.87 rows=333340 width=4)

(actual time=0.009..0.009 rows=1 loops=1001)

Index Cond: (author_id > t_1._author_id)

Heap Fetches: 0

Planning time: 0.143 ms

Execution time: 11.301 ms

(14 rows)

dataegret.com

Queries which cannot be optimized 32

• NOT IN (query) instead of EXISTS
• JOIN instead IN/EXISTS
• unordered LIMIT
• ORDER BY random()

• Avoid them!

dataegret.com

Queries which cannot be optimized 32

• NOT IN (query) instead of EXISTS
• JOIN instead IN/EXISTS
• unordered LIMIT
• ORDER BY random()
• Avoid them!

dataegret.com

Takeaways 33

• Do not optimize all the queries - start with most critical for your
production system
• Find your baseline
• Do not tune the query, try to figure out how to do what it does more
effectively!

dataegret.com

Useful materials 34

• https://explain.depesz.com/
• https://www.pgmustard.com/docs/explain
• https://use-the-index-luke.com/
• A book by Dombrovskaya / Novikov / Bailliekova PostgreSQL Query
Optimization

dataegret.com

Questions? 35

ik@dataegret.com

dataegret.com

