
Your remote PostgreSQL DBA Team

An ultimate guide to upgrading your
PostgreSQL installation
Ilya Kosmodemiansky

ik@dataegret.com

mailto:ik@dataegret.com

Why this talk?
Upgrading your PostgreSQL is not a rocket science!

...but there are lots of small details

An unsuccessful upgrade can ruin your data

Or at least cause an unacceptable downtime

Upgrade requires good knowledge of your system and substantial
preparation time

2

Because of that
DBAs do not like upgrades

They are attached to outdated versions

They manage to screw up an upgrade when they finally decide to
perform one

3

Why do you need to upgrade?
Bugfixes, security fixes

Many performance improvements and new features over the last
years

Upgrading on time makes it easier

Running 7.* (or even 9.*) in 2023 would make consultants too happy

4

PostgreSQL version numbering
<= 9.6.*

9.4.3
Major

Major
Minor

5

PostgreSQL version numbering
> 9.6.*

14.2
Major Minor

6

Types of upgrades
Minor

New versions' binaries can run on old version datafiles

Major

New versions' binaries can run on old version datafiles, but
require new system tables and internal data format may change

Major with special requirements

7

Before any upgrade
Read carefully version specific release notes

Play with chosen upgrade method in test environment

Align with your application development team

Make a backup and check it by test recovery

8

Minor upgrades are easy
You simply install new binaries and start new database server on
the old data directory

There are no new features between minor versions

Still - keep an eye on updating all PostgreSQL-related packages you
use

9

Major upgrade prerequisites
Install new versions for all PostgreSQL-related packages

Read carefully all release notes

Know your PostgreSQL installation

Choose the method and carefully read the documentation for this
method

Align with your application development team

Do a backup and check it by doing a test recovery

10

Check which PostgreSQL-related packages you use

 your_server:~$ sudo dpkg -l *postgres*
 ||/ Name Version
 +++-===-=============================
 ii postgresql-9.3 9.3.15-1.pgdg14.04+1
 ii postgresql-client-9.3 9.3.15-1.pgdg14.04+1
 ii postgresql-client-common 182.pgdg14.04+1
 ii postgresql-common 182.pgdg14.04+1
 ii postgresql-contrib-9.3 9.3.15-1.pgdg14.04+1
 ii postgresql-plperl-9.3 9.3.15-1.pgdg14.04+1
 ii postgresql-server-dev-9.3 9.3.15-1.pgdg14.04+1

 your_server:~$ sudo dpkg -l *pg*
 ||/ Name Version
 +++-===-=============================
 ii libdbd-pg-perl 2.19.3-2
 ii pgbouncer 1.5.4-4
 ii pgdg-keyring 2014.1

11

Major upgrade methods
Good old dump/restore

pg_upgrade

Replication-based methods

12

Major upgrade using pg_dump
Difficult to make without downtime if you have a large, heavy
loaded database

Requires additional disk space

Works with any PostgreSQL version since 7.0

pg_dump -Fc - custom format, -Z - compression

13

Major upgrade using pg_dump
pg_dump -Fd --jobs can be a good option in terms of speed and
downtime

But if using -j you can't do things like that: pg_dumpall -p 5432|
psql -d postgres -p 5433

If your installation can be upgraded easily by dump/restore, you
are lucky!

14

Major upgrade using pg_dump - procedure

Install new binaries

Initialize new cluster. Don't forget about locale

Change config files appropriately

It can be a good idea to use newer version of pg_dump, but be
careful if running on pre-9.2 server

Restore the dump, try to figure out if everything looks good

Switch your application to the new cluster

15

Install new binaries

Know your packet manager!

Debian/Ubuntu tweaks:

in /etc/postgresql/14/main/start.conf change auto to manual

remember about --download-only

16

pg_upgrade - outline
How it works?

Procedure

Simple case - standalone server

How to minimize downtime?

Upgrading hot-standby cluster

Details

17

pg_upgrade - How it works?

user data

pg_clog

pg_catalog

pg_clog

pg_catalog

old

new

user data

pg_clog

pg_catalog

pg_clog

pg_catalog

freeze

user data

pg_clog

pg_catalog

pg_clog

pg_catalog

pg_clog and pg_control

user data

pg_clog

pg_catalog

pg_clog

pg_catalog

user data

dump/restore of schema
and

cp or relink of datafiles

18

pg_upgrade - preparations
check for replication slots (we most likely need to recreate them
after upgrade)

Read release notes

pg_upgrade documentation

incompatibilities section

check list of your extensions and their compatibility

Discuss procedure with your Dev Team

make an extra backup

pg_dumpall -s

19

pg_upgrade - procedure
Create empty database for new version of PostgreSQL

Stop database with old PostgreSQL version

Start upgrade procedure with pg_upgrade command

Start database that runs on new PostgreSQL version

20

pg_upgrade - procedure
Start collecting statistics (pg_upgrade does not transfer optimizer
statistics)

When statistic collection started, you can open database for your
application

Depending on your database, you can achieve 1-10 min downtime
target

21

pg_upgrade - minimizing downtime
Use pgbouncer

PAUSE/RESUME

Issue CHECKPOINT; on old server before you start, to make
shutdown process faster

Use -k (--link) to use hard links instead of copy (but carefully!)

22

pg_upgrade - hot-standby replica
Upgrade primary as a standalone server

Keep replica intact to failover if something goes wrong

Reinstantiate your replica

Procedure

Pause pgbouncer on standby or stop it

Clone a replica from upgraded primary using pg_basebackup

Start replica with new binaries

Resume pgbouncer connections or start pgbouncer.

23

pg_upgrade - Details
pg_upgrade does not transfer optimizer statistics

instead, it generates a script ./analyze_new_cluster.sh

It basically runs vacuumdb --all --analyze-in-stages

In some cases it is better to run vacuumdb --all --analyze-only

Since 9.5 you can vacuumdb run in parallel (-j 20)

We usually use vacuumdb --all --analyze-in-stages and open
database for application after medium optimizer statistics (10
targets) are generated

24

pg_upgrade - Details
Documentation suggests to use rsync to reinstantiate standby

rsync --archive --delete --hard-links --size-only old_pgdata
new_pgdata remote_dir

rsync allows you to save a lot of network traffic in that case

...and provides lots of opportunities to shoot yourself in the foot

pg_basebackup is generally safer

pg_basebackup -v -P -R -c fast -h IP -U replica -D
/var/lib/postgresql/14/main --wal-method=stream

25

pg_upgrade - Details
Debian/Ubuntu follow their own way

Wrappers, like pg_ctlcluster are designed to manipulate
PostgreSQL cluster in a Debian way

pg_upgradecluster -v 9.5 9.3 main1 -m upgrade -k supposed to be a
make-me-happy button for a DBA

It even takes care of converting postgresql.conf parameters for you

But I strongly recommend to do this manually

26

pg_upgrade - Details
Extensions can surprise you

pg_upgrade keeps old versions of extensions

We advise to cycle through all extensions and perform alter
extension EXTENSION_NAME update;

Some extensions need special care: for example PostGIS should be
updated before an upgrade

27

pg_upgrade - work in progress
Recently there was a bit discoussion of pg_upgrade at Developer
Unconference 2023 in Ottawa

no statistic in the new cluster is the biggest problem

a nice idea is to sample old cluster and transfer that statistics

implementation of that could be not easy

28

pg_upgrade - notes on pgBackRest
check version compatibility

right after pg_upgrade

change path in pgbackrest.conf

pgbackrest --stanza=$STANZA stanza-upgrade --no-online

29

Using replication to upgrade PostgreSQL

Streaming replication doesn't work between versions

But some replication methods can do that

Logical replication

Slony-I (Yes, even in 2023!)

Londiste (maybe not in 2023...)

Procedure

Setup new database cluster

Setup replication from old one to a new one

Perform failover

30

Conclusion
Method downtime extra disk space complexity riskiness

dump/restore high double low low

pg_upgrade (copy) high double high low

pg_upgrade (link) low low high very high

Logical replication low double high low

Slony-I low double medium low

Londiste low double medium low

31

Don't forget manual vacuum
Reading list

http://momjian.us/main/writings/pgsql/pg_upgrade.pdf

https://blog.2ndquadrant.com/untangling-the-postgresql-upgrade/

http://blog.endpoint.com/2016/12/postgres-statistics-and-pain-of-
analyze.html

https://www.depesz.com/2016/11/08/major-version-upgrading-
with-minimal-downtime/

32

http://momjian.us/main/writings/pgsql/pg_upgrade.pdf
https://blog.2ndquadrant.com/untangling-the-postgresql-upgrade/
http://blog.endpoint.com/2016/12/postgres-statistics-and-pain-of-analyze.html
https://www.depesz.com/2016/11/08/major-version-upgrading-with-minimal-downtime/

Questions?

ik@dataegret.com

33

mailto:ik@dataegret.com

