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• ...every statement incurs overhead

• Network

• Parsing

• Planning

• Locks

• Execution

• Response

• Indexes & Constraints

• Even local application --> DB has overhead
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Rows Per Batch Total Insert Time in Seconds

1 380

10 283

500 215

5000 202















• Little extra programming effort

• Supported regardless of the driver or language 

(even dynamic pl/pgsql)

• Moderately faster

• Generally, requires batching subsets of rows









• Can be faster than multi-valued INSERT

• …in some cases

• Avoids the 65,535 parameter limit 😀 

• YMMV with language support for PostgreSQL arrays

• Caution: May not handle custom types correctly





• Preferred, optimized tool for PostgreSQL bulk load

• Reads from files or STDIN

• Paths are local to the PostgreSQL server

• Can also pull data out to a file

• Not in the SQL standard

*NOT psql \COPY… but closely related



• Single transaction 

• Single threaded

• No progress feedback prior to PG14

• pg_stat_progress_copy view

• In psql:

SELECT * FROM pg_stat_progress_copy \watch 1



• Minimal format configuration

• No failure tolerance - stops on first error

• Failed import takes space and leaves rows 

inaccessible ☹️







• Before/After scripts

• Logfile support

• Data casting

• Error support

• Continuous migrations

• ...and more

• Initially created by Dimitri Fontaine

• CLI application

• Many migration formats

• CSV, DBF, IXF

• SQLite, MySQL, SQL Server

• PostgreSQL to PostgreSQL

• Limited Redshift support



• Created by Timescale to assist in time-ordered inserts

• Written in Golang

• Multi-threading through multiple COPY commands

• Progress output

• Configurable rows per batch

• Significantly faster for high-latency (remote) 

connections

https://github.com/timescale/timescaledb-parallel-copy





• Data inserted into UNLOGGED tables is not written to the 

Write-Ahead Log (WAL)

• Eliminates some of that INSERT overhead

• Data is not crash safe

• Not accessible on replication servers (requires WAL)

• Available with CREATE and ALTER table



• Your data process can accept the risk of loss for 

increased INSERT

• Staging tables for ETL processes

• Intermittent, repeatable work (easy to redo)







• Constraints and Indexes cannot be disabled*

• *Constraints are checked by triggers which can be disabled

• Constraints are always checked

• Indexes are always updated

• Heap Only Tuples aside

• Dropping before insert can significantly improve 

performance… at your own risk 😱





• PG10+ includes native partitioning

• Particularly good for time-series data

• Indexes are local to the partition





• Specific COPY/BINARY COPY support

• Multi-valued and batching functions

• How is auto-commit handed?

• Avoid parameterized query formatter

• Use the ARRAY trick if the SDK only uses 

parameterized queries
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