
PGConf.DE 2023

PostgreSQL & DevOps
Advocate

@ryanbooz

/in/ryanbooz

www.softwareandbooz.com

youtube.com/@ryanbooz

https://twitter.com/ryanbooz
https://www.linkedin.com/in/ryanbooz/
http://www.softwareandbooz.com/
https://twitter.com/ryanbooz

👨‍👩‍👧 ‍👦 ,🎵,🐝,☕️ = 💯

👫+[👧,👧,👦,👧,👦,👧] = 🧡

1999 2004 2018 2020

Work

Hobby

My Journey

2022

Death By 1,000 INSERT's

4+ methods for bulk loading data

Demos

Database DevOps Goal

{JSON} C,S,V
01011
10011
00001
11001
10110

• ...every statement incurs overhead

• Network

• Parsing

• Planning

• Locks

• Execution

• Response

• Indexes & Constraints

• Even local application --> DB has overhead

✅❌

Rows Per Batch Total Insert Time in Seconds

1 380

10 283

500 215

5000 202

• Little extra programming effort

• Supported regardless of the driver or language

(even dynamic pl/pgsql)

• Moderately faster

• Generally, requires batching subsets of rows

• Can be faster than multi-valued INSERT

• …in some cases

• Avoids the 65,535 parameter limit 😀

• YMMV with language support for PostgreSQL arrays

• Caution: May not handle custom types correctly

• Preferred, optimized tool for PostgreSQL bulk load

• Reads from files or STDIN

• Paths are local to the PostgreSQL server

• Can also pull data out to a file

• Not in the SQL standard

*NOT psql \COPY… but closely related

• Single transaction

• Single threaded

• No progress feedback prior to PG14

• pg_stat_progress_copy view

• In psql:

SELECT * FROM pg_stat_progress_copy \watch 1

• Minimal format configuration

• No failure tolerance - stops on first error

• Failed import takes space and leaves rows

inaccessible ☹️

• Before/After scripts

• Logfile support

• Data casting

• Error support

• Continuous migrations

• ...and more

• Initially created by Dimitri Fontaine

• CLI application

• Many migration formats

• CSV, DBF, IXF

• SQLite, MySQL, SQL Server

• PostgreSQL to PostgreSQL

• Limited Redshift support

• Created by Timescale to assist in time-ordered inserts

• Written in Golang

• Multi-threading through multiple COPY commands

• Progress output

• Configurable rows per batch

• Significantly faster for high-latency (remote)

connections

https://github.com/timescale/timescaledb-parallel-copy

• Data inserted into UNLOGGED tables is not written to the

Write-Ahead Log (WAL)

• Eliminates some of that INSERT overhead

• Data is not crash safe

• Not accessible on replication servers (requires WAL)

• Available with CREATE and ALTER table

• Your data process can accept the risk of loss for

increased INSERT

• Staging tables for ETL processes

• Intermittent, repeatable work (easy to redo)

• Constraints and Indexes cannot be disabled*

• *Constraints are checked by triggers which can be disabled

• Constraints are always checked

• Indexes are always updated

• Heap Only Tuples aside

• Dropping before insert can significantly improve

performance… at your own risk 😱

• PG10+ includes native partitioning

• Particularly good for time-series data

• Indexes are local to the partition

• Specific COPY/BINARY COPY support

• Multi-valued and batching functions

• How is auto-commit handed?

• Avoid parameterized query formatter

• Use the ARRAY trick if the SDK only uses

parameterized queries

🎉 🎉

	Intro slide
	Slide 1: Bulk Inserts With PostgreSQL: 5+ Methods For Efficient Data Loading
	Slide 2
	Slide 3
	Slide 4
	Slide 5: github.com/ryanbooz/presentations
	Slide 6: Agenda
	Slide 7: 01/04 Death By 1,000 INSERT's
	Slide 8: How often do you load a lot of data into PostgreSQL?
	Slide 9
	Slide 10
	Slide 11: INSERTs are slow because...
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: 02/04 5+ Methods for Bulk Loading Data
	Slide 21: Batched INSERT
	Slide 22
	Slide 23: Multi-statement INSERT
	Slide 24
	Slide 25
	Slide 26: Multi-valued INSERT
	Slide 27
	Slide 28
	Slide 29: Batched and Multi-valued INSERT
	Slide 30: ARRAY values INSERT
	Slide 31
	Slide 32
	Slide 33: ARRAY values INSERT
	Slide 34: COPY
	Slide 35: COPY*
	Slide 36: COPY Limitations
	Slide 37: COPY Limitations
	Slide 38
	Slide 39: COPY does one job really well: import/export data fast!
	Slide 40: pgloader.io
	Slide 41: Timescale Parallel Copy
	Slide 42: Unlogged Tables
	Slide 43: UNLOGGED Tables - Caution!
	Slide 44: Why use UNLOGGED tables?
	Slide 45: 03/04 Demos
	Slide 46: 04/04 Final Thoughts
	Slide 47: Index & Constraints
	Slide 48: Bonus Demo!
	Slide 49: Partitioning for long-term growth
	Slide 50
	Slide 51: What to look for in language SDKs
	Slide 52: What questions do you have for me?
	Slide 53: 🎉 THANK YOU! 🎉 github.com/ryanbooz/presentations

