
StandBy Database
Shootout
PostgreSQL vs. Oracle
v2

Dirk Krautschick
PGconf.DE 12.04.2024, Munich



#whoami

Dirk Krautschick
Solution Architect

with Aiven since Nov 2023

16 years

DBA, Trainer, Consulting, Sales Engineering

PostgreSQL, Oracle

Married, 2 Junior DBAs

Mountainbike, swimming, movies, music, 
hifi/home cinema, 8 bit computing



PostgreSQL User Group NRW

Founded Dec 2023

1st MeetUp (premiere!) in Feb 2024, Cologne @ ORDIX AG 

2nd Meetup 15.05.2024 in Aachen

"Bringing Vectors to Postgres" by Gülçin Yıldırım Jelínek

"pgBackRest Frequently Asked Questions" by Stefan Fercot

Upcoming events in the pipeline, stay tuned!

Target is at least 4 meetups a year

All around NRW



Disclaimer

Different audience, different perspectives

My experience, my honest opinion

Let‘s stay open minded

Always open for discussions



Some History - Once upon a time…

                              High Availability was…

Frequently dumps :-( 

Disk mirroring (drbd)

Failover Cluster

Trigger based solutions

         wasn’t perfect either…. 

Similar “solutions”

Oracle Failsafe / Failover Cluster …

 …but then…



Some History - Evolution

2006 Log Shipping (8.2)

2010 Streaming Replication (9.0)

Including hot standby DBs

Synchronous with 9.1

2017 Logical Replication (10)

…

1996 manual standby DBs (7.3)

1999 managed standby DBs (8i)

2001 Data Guard Broker (9i), Real Application Cluster

2002 Oracle Streams (9.2)

2007 Active Data Guard (11g)

2009 Golden Gate

…



In memoriam…

Simon Riggs, † 26.03.2024

Long term Core Team Member

and Contributor

Responsible for

Sync Replication

Hot Standby

Point in Time Recovery

Larry Carpenter, † 22.03.2024

With Oracle since 1994

Data Guard Key Role since 2001 

Development 

Product Management

called as “Mr. Data Guard”



Concepts - The same Idea



Concepts - The same Idea



Concepts - The same Idea



Concepts - The same Idea



Some words about RAC!

Real Application Cluster (RAC)

Cache fusion/fast interconnect

Compute HA only

Scaling capabilities

Data outages not covered

only over storage redundancies

Application dependencies

Unnecessary use cases



Under the Hood

postgres@node0 ~]# systemctl status postgresql-16-core.service

postgresql-16-core.service - PostgreSQL 16 database server
…
   Memory: 23.5M
   CGroup: /system.slice/postgresql-16-core.service
       ├─ 1884 /usr/pgsql-16/bin/postmaster -D /u00/postgres/16/data
       ├─ 1938 postgres: core16: checkpointer
       ├─ 1939 postgres: core16: background writer
       ├─ 1940 postgres: core16: walwriter
       ├─ 1941 postgres: core16: autovacuum launcher
       ├─ 1943 postgres: core16: stats collector
       ├─ 1944 postgres: core16: pg_wait_sampling collector
       ├─ 1945 postgres: core16: logical replication launcher
       ├─ 2016 postgres: core16: walsender replicator 192.168.0.200(55168)

postgres@node1 ~]# systemctl status postgresql-16-core.service

postgresql-16-core.service - PostgreSQL 16 database server
…
   Memory: 18.7M
   CGroup: /system.slice/postgresql-16-core.service
       ├─2032 /usr/pgsql-16/bin/postmaster -D /u00/postgres/16/data
       ├─2041 postgres: core16: startup recovering 000000020000…
       ├─2256 postgres: core16: checkpointer
       ├─2257 postgres: core16: background writer
       ├─2258 postgres: core16: stats collector
       ├─2259 postgres: core16: pg_wait_sampling collector
       └─3083 postgres: core16: walreceiver streaming 0/39000320



Under the Hood



Under the Hood

~10 different backend process types

Primary DB
walsender

(for each standby DB)

Standby DB
walreceiver

recovery process



Under the Hood

~10 different backend process types

Primary DB
walsender

(for each standby DB)

Standby DB
walreceiver

recovery process

524 different backend processes (21.5)
SQL> select name, description from v$bgprocess;

FMON  File Mapping Monitor Process
ACMS  Atomic Controlfile to Memory Server
BRDG  KSRPS Message Bus Bridge
LCK1  Lock Process 1
...
S000  Shared servers
TT03  Redo Transport
M003  MMON slave class 1

524 rows selected.



Under the Hood

~10 different backend process types

Primary DB
walsender

(for each standby DB)

Standby DB
walreceiver

recovery process

…but

“only” ~70-100 in usual environment

# ps auxw | grep -c "ora_"
73

# ps auxwww | grep "ora_"

oracle    429876  0.0  1.6 1282444 61780 ?   Ss   00:06   0:00 ora_pmon_cdb2
oracle    429880  0.0  1.6 1282448 61900 ?   Ss   00:06   0:00 ora_clmn_cdb2
oracle    429884  0.0  1.6 1282196 62800 ?   Ss   00:06   0:00 ora_psp0_cdb2
...
oracle    501689  0.0  1.9 1283216 73588 ?   Ss   00:12   0:00 ora_m002_cdb2
oracle    548563  0.0  2.6 1284664 98448 ?   Ss   00:16   0:00 ora_m003_cdb2



Under the Hood

~10 different backend process types

Primary DB
walsender

(for each standby DB)

Standby DB
walreceiver

recovery process

DMON (Data Guard Broker Monitor)

RSM (Remote System Monitor)

NSV (DG Broker Network Slave)

NSS (Network Server Sync)

MRP (Managed Recovery Process)

RFS (Remote File Server)

LNS (LGWR Network Server)



Building Up - Preparations

WAL archiving not necessary!

Check defaults

wal_level = replica || logical

max_wal_senders

max_replication_slots

Create replication-user and -slot

Configure pg_hba.conf

Recommended: track_commit_timestamp

“ARCHIVELOG Mode” required

Force Logging

Prepare naming
DB_NAME

DB_UNIQUE_NAME

Create standby Redo Logfiles

Recommended: flashback database

Direct preparation of Primary DB                                      

with Data Guard Broker (21c)



Building Up

Remote copy of primary DB
pg_basebackup –R …

Check Standby conf
primary_conninfo = ‘…’

primary_slot_name = slot1

Start Standby DB

Ready to go….

OracleNet Config

Prepare tnsnames.ora on both sides

Configure Listener on both sides 

including handle for Broker

Prepare environment on standby side

Create mandatory folders

Create dummy init.ora file

Start NOMOUNT



Building Up

…just chillin’ with a beer Connect Recovery Manager (RMAN)

Target primary DB

Auxiliary standby DB

Force RMAN duplicate

Or create standby DB with DBCA

Database Configuration Assistance (12.2) 



Building Up

…take a nap… Activate the Data Guard Broker

Connect to the Broker
dgmgrl sys/secret@dbname

Create a Data Guard configuration

Add standby DB to configuration

Enable configuration

Ready



The Paranoia

Parameters
synchronous_standby_names

<list of standbys>

synchronous_commit

on | off | local |

remote_apply | remote_write

Protection modes

Maximum Protection (sync)

Maximum Performance (async)

Maximum Availability (“maybe” sync)



How many Standbys are possible?

Theoretically up to 262143

Numerical limit of max_wal_sender

Cascading!

Since 11.2.0.1 up to 30 standby DBs

(< 11.2 up to 9 standby DBs)

Cascading!



Using standby DB as read replica?

Just there by default!

Parameters

hot_standby = on | off

Active Data Guard

As optional License

But cool features, like e.g.

DML Redirection  (since 19c)

Or just simply switch to “SQL Apply”



Cluster Handling - Overall

Manual steps

Customized scripts
Command Line Interfaces

Data Guard Broker (DGMGRL)

SQLplus

Enterprise Manager Cloud Control



Cluster Handling - Status Check

Logging

View   pg_stat_replication     

(on primary DB)

View   pg_stat_wal_receiver       

(on standby DB)

External solutions

e.g. Grafana dashboards

Views

Data Guard Broker
DGMGRL> show configuration;

Configuration - myconfig
  Protection Mode: MaxPerformance
  Members:
  node0      - Primary database
    node1      - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS   (status updated 11 seconds ago)



Cluster Handling - Status Check

DGMGRL> show database node0;

Database - node0

  Role:           PRIMARY
  Intended State: TRANSPORT-ON
  Instance(s):

node0

Database Status:
SUCCESS

DGMGRL> show database node1;

Database - node1

  Role:           PHYSICAL STANDBY
  Intended State: APPLY-ON
  Transport Lag:  0 seconds (computed 3 second ago)
  Apply Lag:      0 seconds (computed 3 second ago)
  Average Apply Rate: 6.00 KByte/s
  Real Time Query: OFF
  Instance(s):

node1

Database Status:
SUCCESS



Cluster Handling - Status Check

Oracle SQL Developer Oracle Enterprise Manager Cloud Control



Cluster Handling - Failover

Promote Standby DB

pg_ctl promote …

promote_trigger_file

Take care for the devoted node

STONITH

Prevention of split brain

Failover with DGMGRL

  DGMGRL> failover to node1;
  Performing failover NOW, please wait...
  Failover succeeded, new primary is “node1"
  DGMGRL>

Broker detects devoted node…

…with working communication

So no 100% guarantee



Cluster Handling - Automatic Failover?

Not included in core

Customized scripts

External initiation with trigger file

Additional Tools/Extensions

Fast-Start Failover, FSFO (since 10.2)

Independent Observer

Up to 3 Observers (since 12.2)

Included in Oracle Client Package

Pre-defined or individual thresholds



Cluster Handling - Reinstate

Manual reinstate

Drop broken old primary DB

…and yet again…

pg_basebackup –R …

Add node as follower

Reinstate of old primary
  DGMGRL> reinstate database node0;
  Reinstating database "node0", please wait...
  ...
  Continuing to reinstate database "node0" ...
  Reinstatement of database "node0" succeeded
  DGMGRL>



Cluster Handling - Switchover

Manual steps

Restrict all connections out

Stop primary DB consistent

Check if all WALs are applied on standby 

DB

Change config on primary

Promote Standby DB

Quite fiddly :-(

Easy with Broker
  DGMGRL> switchover to node1;
  Performing switchover NOW, please wait...
  Operation requires a connection to instance …
  Connecting to instance "node0"...
  Connected as SYSDBA.
  New primary database "node1" is opening...
  Operation requires start up of instance …
  Starting instance "node0"...
  ORACLE instance started.
  Database mounted.
  Switchover succeeded, new primary is "node1"



Client Connection Handling

Core
Multiple hosts (libpq)

External

Virtual IP

HAproxy

PgBouncer

Pgpool-II

Simple

Multiple Hosts in TNSnames.ora

Services

Sophisticated / Application based

Transparent Application Failover (TAF)

Fast Connection Failover (FCF)

Transaction Guard (TG)

Application Continuity (AC)

Transparent Application Continuity (TAC)



Getting closer to Data Guard …

Extension and/or solutions available for providing proper

Open Source

Replication management

Failover-/Switchover handling

Automatic Failover, Observer-like functionality (witness)



Getting closer to Data Guard …

repmgr

Initial maintained by 2ndQuadrant

GPL license
https://github.com/EnterpriseDB/repmgr

Release v1.0 (May 2010)

Actual Release v5.4.1 (July 2023)

C-based

patroni

Initiated by Zalando (October 2015)

as fork of governor

MIT license
https://github.com/zalando/patroni

Release v1.0 (July 2016)

Actual Release v3.3.0 (April 2024)

Python-based

https://github.com/EnterpriseDB/repmgr
https://github.com/zalando/patroni


Getting closer to Data Guard …repmgr

Cluster overview in repmgr

$ repmgr --config-file=/etc/repmgr/14/repmgr.conf cluster show

 ID | Name  | Role    | Status        | Upstream | Location | Priority | Timeline | Connection string
----+-------+---------+---------------+----------+----------+----------+----------+-------------------------------------------------
 1  | node0 | primary | * running     |          | default  | 100      | 11       | host=node0 port=50141 dbname=repmgr user=repmgr
 2  | node1 | standby |   running     | node0    | default  | 100      | 11       | host=node1 port=50141 dbname=repmgr user=repmgr
 3  | node2 | standby |   running     | node0    | default  | 100      |          | host=node2 port=50141 dbname=repmgr user=repmgr
 4  | node3 | witness |   running     | node0    | default  | 0        | n/a      | host=node3 port=50141 dbname=repmgr user=repmgr

Example for switchover command

$ repmgr --config-file=/etc/repmgr/14/repmgr.conf standby switchover --siblings-follow



Getting closer to Data Guard …repmgr

Event listing in repmgr

$ repmgr --config-file=/etc/repmgr/14/repmgr.conf cluster event
 Node ID | Name  | Event                  | OK | Timestamp           | Details
---------+-------+---------------------------+----+---------------------+-------------------------------------------------------
 1       | node0 | child_node_new_connect    | t  | 2022-06-09 23:18:37 | new standby "node1" (ID: 2) has connected
 2       | node1 | repmgrd_start          | t  | 2022-06-09 23:18:32 | monitoring connection to upstream node "node0" (ID: 1)
 1       | node0 | repmgrd_start          | t  | 2022-06-09 08:06:26 | monitoring cluster primary "node0" (ID: 1)
 1       | node0 | child_node_disconnect  | t  | 2022-05-24 13:35:25 | standby node "node1" (ID: 2) has disconnected
 1       | node0 | child_node_new_connect    | t  | 2022-05-23 20:38:02 | new standby "node1" (ID: 2) has connected
...
 4       | node3 | witness_register       | t  | 2022-04-11 14:32:40 | witness registration succeeded; upstream node ID is 1
 3       | node2 | standby_follow         | t  | 2022-04-11 14:32:39 | standby attached to upstream node "node0" (ID: 1)
 1       | node0 | standby_switchover     | t  | 2022-04-11 14:32:37 | node "node0" (ID: 1) promoted to primary, node "node1"...
 1       | node0 | standby_promote        | t  | 2022-04-11 14:32:15 | server "node0" (ID: 1) was successfully promoted to primary
 2       | node1 | child_node_new_connect    | t  | 2022-04-11 14:15:13 | new witness "node3" (ID: 4) has connected
 4       | node3 | witness_register       | t  | 2022-04-11 14:15:08 | witness registration succeeded; upstream node ID is 2



Getting closer to Data Guard …Patroni

Cluster overview

Example for switchover

$ sudo patronictl -c /etc/patroni/patroni.yml list

+ Cluster: pgd14A (7011110722654005156)  -----------+
| Member | Host  | Role    | State   | TL | Lag in MB |
+--------+-------+---------+---------+----+-----------+
| node0  | node0 | Leader  | running | 11 |         0 |
| node1  | node1 | Replica | running | 11 |         0 |
| node2  | node2 | Replica | running | 11 |           |
+--------+-------+---------+---------+----+-----------+

$ sudo patronictl -c /etc/patroni/patroni.yml switchover



Getting closer to Data Guard …Cloud :-)

Use a fully managed PostgreSQL with 

e.g. “Aiven for PostgreSQL”

having all necessary bells and whistles and

with up to 2 read replicas for high availability



What about logical replication?

Same basic setup, except…

wal_level = logical

Schema transfer

Script

pg_dump

CREATE PUBLICATION / SUBSCRIPTION

Or use Extension pglogical!

SQL apply

Setup physical replication

Stop redo apply on standby DB

Prepare primary for logical standby DB

Transition to logical standby DB

Open logical standby DB



What about Multimaster Replication?

Thoughts

Only with logical replication

Oracle RAC is NOT Multimaster Replication

Often more a wish than a real need

Application dependencies

Of course the same with Oracle RAC or GoldenGate



What about Multimaster Replication?

Have seen manual implementations

«On your own risk!»

pg_logical

Commercial Solutions

Oracle Streams

Deprecated with 12c

Desupported with 19c

Oracle Golden Gate

Additional product

Oracle <-> Oracle

Oracle ← (PostgreSQL, MySQL,…)



Conclusion

Pro

Lightweight configuration, architecture

No archived WAL files necessary

Very flexible with logical replication

Extensibility

Cons

Fiddly Failover/Switchover handling

No proper native connection handling

No automatism

Pro

Proper Automatic Failover solution included

Handling with Broker CLI, native tooling

Interesting features

Cons

Not that easy, still straight forward 

Only for Enterprise Edition

Active Data Guard additional license

Poor logical capabilities



Final Words

Core replication technologies are quite equal

Oracle Data Guard Licensing!

…but Oracle brings a bunch of features

PostgreSQL “Core only” not practical in critical environments

…but extensibility brings flexibility and lots of options

Solutions like patroni, repmgr, etc. nearly on par with Data Guard



The trusted open 
source data platform 
for everyone



Wide column
database

Aiven for
Apache Cassandra®

Data 
visualization

Aiven for
Grafana®

Event stream 
processing

Aiven for
Apache Flink®

Key-value
database

Aiven for
Redis®

Time series 
database

Aiven for
M3

Search
engine

Aiven for
OpenSearch®

Data 
warehouse

Aiven for
ClickHouse®

Relational
databases

Aiven for
MySQL

Aiven for
PostgreSQL®

Event 
streaming

Aiven for
Apache Kafka®

and Kafka® Connect

One data platform for your cloud needs

STORE ANALYZESTREAM

Deploy

DEPLOY

IntegrateHost



Customers


