
Things your explain plan is not telling you

Ants Aasma

PGConf.DE 2024

Hello

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 2/60

About me

▶ Ants Aasma
▶ Senior Database Consultant
▶ 12 years of helping people make PostgreSQL run fast

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 3/60

Everybody loves explain

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 4/60

Explain yourself

▶ EXPLAIN tells us how the database planned to execute our query
▶ EXPLAIN ANALYZE collects statistics how well that went

▶ If you are really curious, then:

EXPLAIN (ANALYZE, VERBOSE, SETTINGS, BUFFERS, WAL, SUMMARY, MEMORY, SERIALIZE TEXT)

▶ Maybe it’s time for EXPLAIN EVERYTHING?

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 5/60

Explain yourself

▶ EXPLAIN tells us how the database planned to execute our query
▶ EXPLAIN ANALYZE collects statistics how well that went

▶ If you are really curious, then:

EXPLAIN (ANALYZE, VERBOSE, SETTINGS, BUFFERS, WAL, SUMMARY, MEMORY, SERIALIZE TEXT)

▶ Maybe it’s time for EXPLAIN EVERYTHING?

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 5/60

Explain yourself

▶ EXPLAIN tells us how the database planned to execute our query
▶ EXPLAIN ANALYZE collects statistics how well that went

▶ If you are really curious, then:

EXPLAIN (ANALYZE, VERBOSE, SETTINGS, BUFFERS, WAL, SUMMARY, MEMORY, SERIALIZE TEXT)

▶ Maybe it’s time for EXPLAIN EVERYTHING?

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 5/60

What are we going to talk about

▶ Explain is great!
▶ Everybody should be using it.

▶ This talk is about the parts that are not (yet) great.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 6/60

What are we going to talk about

▶ Explain is great!
▶ Everybody should be using it.

▶ This talk is about the parts that are not (yet) great.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 6/60

Warning

▶ This talk will have code.

▶ A lot of code.

▶ Like really a lot of it.
SELECT 'If this is too small, you need to try to get closer';

Slides are also available on the conference website to follow along.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 7/60

Warning

▶ This talk will have code.

▶ A lot of code.

▶ Like really a lot of it.
SELECT 'If this is too small, you need to try to get closer';

Slides are also available on the conference website to follow along.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 7/60

Warning

▶ This talk will have code.

▶ A lot of code.

▶ Like really a lot of it.
SELECT 'If this is too small, you need to try to get closer';

Slides are also available on the conference website to follow along.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 7/60

Crash course on reading EXPLAIN

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 8/60

Parts of an explain plan

▶ Represents the tree of a volcano execution model.
▶ Each node pulls from those below it.
▶ Read from the inside out

EXPLAIN SELECT * FROM tasks JOIN jobs USING (job_id) WHERE value > 99.9 LIMIT 10;

Limit (cost=0.42..149.83 rows=100 width=44)
-> Nested Loop (cost=0.42..716.10 rows=479 width=44)

-> Seq Scan on jobs (cost=0.00..188.00 rows=8 width=16)
Filter: (value > 99.9)
Rows Removed by Filter: 1180

-> Index Scan using tasks_job_id_id_done_idx on tasks
(cost=0.42..65.41 rows=60 width=32)

Index Cond: (job_id = jobs.job_id)

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 9/60

Parts of an explain plan

▶ Represents the tree of a volcano execution model.
▶ Each node pulls from those below it.
▶ Read from the inside out

EXPLAIN SELECT * FROM tasks JOIN jobs USING (job_id) WHERE value > 99.9 LIMIT 10;

Limit (cost=0.42..149.83 rows=100 width=44)
-> Nested Loop (cost=0.42..716.10 rows=479 width=44)

-> Seq Scan on jobs (cost=0.00..188.00 rows=8 width=16)
Filter: (value > 99.9)
Rows Removed by Filter: 1180

-> Index Scan using tasks_job_id_id_done_idx on tasks
(cost=0.42..65.41 rows=60 width=32)

Index Cond: (job_id = jobs.job_id)

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 9/60

Running it

EXPLAIN ANALYZE
SELECT * FROM tasks JOIN jobs USING (job_id) WHERE value > 99.9 LIMIT 10;

Limit (cost=0.42..149.83 rows=100 width=44) (actual time=0.153..0.279 rows=100 loops=1)
-> Nested Loop (cost=0.42..716.10 rows=479 width=44) (actual time=0.152..0.272 rows=100 loops=1)

-> Seq Scan on jobs (cost=0.00..188.00 rows=8 width=16) (actual time=0.144..0.167 rows=2 loops=1)
Filter: (value > 99.9)
Rows Removed by Filter: 1180

-> Index Scan using tasks_job_id_id_done_idx on tasks (cost=0.42..65.41 rows=60 width=32) (actual time=0.006..0.045 rows=50 loops=2)
Index Cond: (job_id = jobs.job_id)

Planning Time: 0.188 ms
Execution Time: 0.299 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 10/60

Running it

EXPLAIN ANALYZE
SELECT * FROM tasks JOIN jobs USING (job_id) WHERE value > 99.9 LIMIT 10;

Limit (cost=0.42..149.83 rows=100 width=44) (actual time=0.153..0.279 rows=100 loops=1)
-> Nested Loop (cost=0.42..716.10 rows=479 width=44) (actual time=0.152..0.272 rows=100 loops=1)

-> Seq Scan on jobs (cost=0.00..188.00 rows=8 width=16) (actual time=0.144..0.167 rows=2 loops=1)
Filter: (value > 99.9)
Rows Removed by Filter: 1180

-> Index Scan using tasks_job_id_id_done_idx on tasks (cost=0.42..65.41 rows=60 width=32) (actual time=0.006..0.045 rows=50 loops=2)
Index Cond: (job_id = jobs.job_id)

Planning Time: 0.188 ms
Execution Time: 0.299 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 10/60

Running it

EXPLAIN (ANALYZE, COSTS OFF)
SELECT * FROM tasks JOIN jobs USING (job_id) WHERE value > 99.9 LIMIT 10;

Limit (actual time=0.153..0.279 rows=100 loops=1)
-> Nested Loop (actual time=0.152..0.272 rows=100 loops=1)

-> Seq Scan on jobs (actual time=0.144..0.167 rows=2 loops=1)
Filter: (value > 99.9)
Rows Removed by Filter: 1180

-> Index Scan using tasks_job_id_id_done_idx on tasks (actual time=0.006..0.045 rows=50 loops=2)
Index Cond: (job_id = jobs.job_id)

Planning Time: 0.188 ms
Execution Time: 0.299 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 11/60

Buffers

EXPLAIN (ANALYZE, BUFFERS, COSTS OFF) SELECT COUNT(*) FROM tasks;

Aggregate (actual time=56.689..56.690 rows=1 loops=1)
Buffers: shared hit=2519 read=2153
I/O Timings: shared read=2.774
-> Seq Scan on tasks (actual time=0.008..35.051 rows=599524 loops=1)

Buffers: shared hit=2519 read=2153
I/O Timings: shared read=2.774

Planning Time: 0.059 ms
Execution Time: 56.711 ms

▶ read means from OS, can’t tell if it came from disk or not.
▶ I/O Timings help, always set track_io_timing = on

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 12/60

Buffers

EXPLAIN (ANALYZE, BUFFERS, COSTS OFF) SELECT COUNT(*) FROM tasks;

Aggregate (actual time=56.689..56.690 rows=1 loops=1)
Buffers: shared hit=2519 read=2153
I/O Timings: shared read=2.774
-> Seq Scan on tasks (actual time=0.008..35.051 rows=599524 loops=1)

Buffers: shared hit=2519 read=2153
I/O Timings: shared read=2.774

Planning Time: 0.059 ms
Execution Time: 56.711 ms

▶ read means from OS, can’t tell if it came from disk or not.
▶ I/O Timings help, always set track_io_timing = on

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 12/60

Chapter 1: Why am I smelling TOAST

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 13/60

We need a schema
CREATE TABLE reports (

report_id int primary key,
ruleset_id int not null,
data jsonb not null -- {"metric1": 0.42, ..., "metric1000": 0.123}

);
CREATE TABLE rules (

rule_id int primary key,
ruleset_id int not null,
rule_nr int not null,
metric_field text not null,
max_value real not null -- reports.data->metric_field <= max_value

);
CREATE INDEX ON reports (ruleset_id);
CREATE INDEX ON rules (ruleset_id);

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 14/60

And some data
-- 10000 reports with 1000 metrics each
INSERT INTO reports
SELECT id,

floor(random()*100)+1 ruleset_id,
(SELECT jsonb_object_agg('metric' || metric::text, random())
FROM generate_series(1,1000) metric)

FROM generate_series(1, 10000) id;
-- 100 rulesets with 10 rules each
INSERT INTO rules
SELECT row_number() over (),

ruleset_id,
rule_nr,
'metric' || floor(random()*1000 + 1)::text metric_field,
0.95 + 0.1*random() max_value

FROM generate_series(1, 100) ruleset_id, generate_series(1,10) rule_nr;

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 15/60

The data

SELECT pg_size_pretty(avg(length(data::text))) avg_size,
pg_size_pretty(sum(length(data::text))) total_data_size,
pg_size_pretty(pg_total_relation_size('reports')) total_table_size

FROM reports;

avg_size | total_data_size | total_table_size
----------+-----------------+------------------
32 kB | 316 MB | 159 MB

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 16/60

Lets read the data

EXPLAIN (ANALYZE, COSTS OFF)
SELECT * FROM reports;

1 Seq Scan on reports (actual time=0.008..0.591 rows=10000 loops=1)
2 Planning Time: 0.053 ms
3 Execution Time: 0.868 ms

▶ 316MB in 0.9ms –> 339 GB/s . . .
▶ That’s suspiciously fast. . .
▶ Lets double check

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 17/60

Lets read the data

EXPLAIN (ANALYZE, COSTS OFF)
SELECT * FROM reports;

1 Seq Scan on reports (actual time=0.008..0.591 rows=10000 loops=1)
2 Planning Time: 0.053 ms
3 Execution Time: 0.868 ms

▶ 316MB in 0.9ms –> 339 GB/s . . .
▶ That’s suspiciously fast. . .
▶ Lets double check

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 17/60

Actually read the data

1 \timing on
2 \copy (SELECT * FROM reports) TO '/dev/null'
3 COPY 10000
4 Time: 1687.562 ms (00:01.688)

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 18/60

What’s going on

▶ Large values are split up and stored in a secondary table (toasting)
▶ Main table contains only the identifier
▶ Value is transparently read in as needed. (detoasting)
▶ EXPLAIN ANALYZE doesn’t need it.

▶ The data is not serialized so detoasting is not triggered.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 19/60

Fixed in PostgreSQL 17

EXPLAIN (ANALYZE, COSTS OFF, SERIALIZE TEXT)
SELECT * FROM reports;

1 Seq Scan on reports (actual time=0.009..0.728 rows=10000 loops=1)
2 Planning Time: 0.040 ms
3 Serialization: time= 1169.736 ms output=323787kB format=text
4 Execution Time: 1171.082 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 20/60

Detoasting can be anywhere
SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value AND rule_nr = 1;

1 Merge Join (actual time=82.500.. 299.761 rows=108 loops=1)
2 Merge Cond: (rules.ruleset_id = reports.ruleset_id)
3 Join Filter: (((reports.data -> rules.metric_field))::real > rules.max_value)
4 Rows Removed by Join Filter: 9892

5 Buffers: shared hit=28351 read=17915 written=1
6 -> Index Scan using rules_ruleset_id_idx on rules (actual time=0.030.. 0.326 rows=100 loops=1)
7 Filter: (rule_nr = 1)
8 Rows Removed by Filter: 900

9 Buffers: shared hit=748 read=3
10 -> Index Scan using reports_ruleset_id_idx on reports (actual time=0.010.. 3.275 rows=10000 loops=1)

11 Buffers: shared hit=5515
12 Execution Time: 299.787 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 21/60

Detoasting can be anywhere
SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value AND rule_nr = 1;

1 Merge Join (actual time=82.500.. 299.761 rows=108 loops=1)
2 Merge Cond: (rules.ruleset_id = reports.ruleset_id)
3 Join Filter: (((reports.data -> rules.metric_field))::real > rules.max_value)
4 Rows Removed by Join Filter: 9892

5 Buffers: shared hit=28351 read=17915 written=1
6 -> Index Scan using rules_ruleset_id_idx on rules (actual time=0.030.. 0.326 rows=100 loops=1)
7 Filter: (rule_nr = 1)
8 Rows Removed by Filter: 900

9 Buffers: shared hit=748 read=3
10 -> Index Scan using reports_ruleset_id_idx on reports (actual time=0.010.. 3.275 rows=10000 loops=1)

11 Buffers: shared hit=5515
12 Execution Time: 299.787 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 21/60

Detoasting can be anywhere
SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value AND rule_nr = 1;

1 Merge Join (actual time=82.500.. 299.761 rows=108 loops=1)
2 Merge Cond: (rules.ruleset_id = reports.ruleset_id)

3 Join Filter: (((reports.data -> rules.metric_field))::real > rules.max_value)

4 Rows Removed by Join Filter: 9892

5 Buffers: shared hit=28351 read=17915 written=1
6 -> Index Scan using rules_ruleset_id_idx on rules (actual time=0.030.. 0.326 rows=100 loops=1)
7 Filter: (rule_nr = 1)
8 Rows Removed by Filter: 900

9 Buffers: shared hit=748 read=3
10 -> Index Scan using reports_ruleset_id_idx on reports (actual time=0.010.. 3.275 rows=10000 loops=1)

11 Buffers: shared hit=5515
12 Execution Time: 299.787 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 22/60

Detoasting is not cached
/*+ MergeJoin(reports rules) Leading(reports rules) */
SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value

1 Merge Join (actual time=45.499..2579.457 rows=1593 loops=1)
2 Merge Cond: (rules.ruleset_id = reports.ruleset_id)
3 Join Filter: (((reports.data -> rules.metric_field))::real > rules.max_value)
4 Rows Removed by Join Filter: 98407

5 Buffers: shared hit=436246 read=20105
6 -> Index Scan using rules_ruleset_id_idx on rules (actual time=0.042..0.411 rows=1000 loops=1)
7 Buffers: shared hit=740 read=11
8 -> Index Scan using reports_ruleset_id_idx on reports (actual time=0.012..22.575 rows=99991 loops=1)
9 Buffers: shared hit=55590 read=10

10 Execution Time: 2579.533 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 23/60

Detoasting is not cached
/*+ MergeJoin(reports rules) Leading(reports rules) */
SELECT report_id, rule_id
FROM reports JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value

1 Merge Join (actual time=45.499..2579.457 rows=1593 loops=1)
2 Merge Cond: (rules.ruleset_id = reports.ruleset_id)
3 Join Filter: (((reports.data -> rules.metric_field))::real > rules.max_value)
4 Rows Removed by Join Filter: 98407

5 Buffers: shared hit=436246 read=20105
6 -> Index Scan using rules_ruleset_id_idx on rules (actual time=0.042..0.411 rows=1000 loops=1)
7 Buffers: shared hit=740 read=11
8 -> Index Scan using reports_ruleset_id_idx on reports (actual time=0.012..22.575 rows=99991 loops=1)
9 Buffers: shared hit=55590 read=10

10 Execution Time: 2579.533 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 23/60

How to spot detoasting

▶ Look for unreasonably high buffer accesses.
▶ Look for large columns used in predicates and function calls (VERBOSE helps)

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 24/60

Example of early detoasting

EXPLAIN (BUFFERS, VERBOSE, ANALYZE, COSTS OFF)
SELECT LENGTH(data::text) FROM reports ORDER BY random() LIMIT 100;

1 Limit (actual time=1291.706..1291.725 rows=100 loops=1)
2 Output: ((data)::text), (random())
3 Buffers: shared hit=20342 read=19732
4 -> Sort (actual time=1291.704..1291.717 rows=100 loops=1)
5 Output: ((data)::text), (random())
6 Sort Key: (random())

7 Sort Method: top-N heapsort Memory: 3945kB
8 -> Seq Scan on public.reports (actual time=0.210..1279.087 rows= 10000 loops=1)

9 Output: (data)::text , random()

10 Buffers: shared hit=20342 read=19732
11 Execution Time: 1291.764 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 25/60

How to fix detoasting

Case 1: value is detoasted too early.

▶ Use subqueries with OFFSET/LIMIT as a boundary to limit evaluation push down.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 26/60

Subquery boundary
SELECT data::text FROM (SELECT data FROM reports ORDER BY random() LIMIT 100);

1 Subquery Scan on unnamed_subquery (actual time=2.232..14.562 rows= 100 loops=1)

2 Output: (unnamed_subquery.data)::text

3 Buffers: shared hit=442 read=32
4 -> Limit (actual time=2.076..2.089 rows=100 loops=1)
5 Output: reports.data, (random())
6 -> Sort (actual time=2.076..2.081 rows=100 loops=1)
7 Output: reports.data, (random())
8 Sort Key: (random())

9 Sort Method: top-N heapsort Memory: 37kB
10 -> Seq Scan on public.reports (actual time=0.008..0.990 rows=10000 loops=1)

11 Output: reports.data , random()

12 Buffers: shared hit=74
13 Execution Time: 14.582 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 27/60

Subquery boundary
SELECT data::text FROM (SELECT data FROM reports ORDER BY random() LIMIT 100);

1 Subquery Scan on unnamed_subquery (actual time=2.232..14.562 rows= 100 loops=1)

2 Output: (unnamed_subquery.data)::text

3 Buffers: shared hit=442 read=32
4 -> Limit (actual time=2.076..2.089 rows=100 loops=1)
5 Output: reports.data, (random())
6 -> Sort (actual time=2.076..2.081 rows=100 loops=1)
7 Output: reports.data, (random())
8 Sort Key: (random())

9 Sort Method: top-N heapsort Memory: 37kB
10 -> Seq Scan on public.reports (actual time=0.008..0.990 rows=10000 loops=1)

11 Output: reports.data , random()

12 Buffers: shared hit=74
13 Execution Time: 14.582 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 27/60

How to fix detoasting 2

Case 2: value is detoasted multiple times

▶ Force early detoasting by a dummy operation.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 28/60

Add dummy operation

SELECT report_id, rule_id
FROM reports
JOIN rules USING (ruleset_id)

WHERE (data->metric_field)::real > max_value

to
SELECT report_id, rule_id
FROM (SELECT report_id, ruleset_id, data || '{}' data FROM reports OFFSET 0)

JOIN rules USING (ruleset_id)
WHERE (data->metric_field)::real > max_value;

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 29/60

Dummy operation explain

1 Hash Join (actual time=0.749..333.923 rows=1248 loops=1)
2 Hash Cond: (reports.ruleset_id = rules.ruleset_id)
3 Join Filter: (((((reports.data || '{}'::jsonb)) -> rules.metric_field))::real > rules.max_value)
4 Rows Removed by Join Filter: 98752

5 Buffers: shared hit=30216 read=9866
6 -> Seq Scan on reports (actual time=0.045..273.442 rows=10000 loops=1)

7 Buffers: shared hit=30214 read=9860
8 -> Hash (actual time=0.213..0.214 rows=1000 loops=1)
9 Buckets: 1024 Batches: 1 Memory Usage: 63kB

10 Buffers: shared hit=2 read=6
11 -> Seq Scan on rules (actual time=0.004..0.099 rows=1000 loops=1)
12 Buffers: shared hit=2 read=6
13 Execution Time: 334.006 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 30/60

Handling TOAST in queries

▶ Be concious of whether large values are involved in a query plan.
▶ The planner is completely oblivious about detoasting.
▶ Think if you need to be eager or lazy.
▶ Use tricks to force the planners hand.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 31/60

Chapter 2: I (don’t) see dead tuples

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 32/60

Schema time

▶ We are building a task queue
CREATE TYPE task_status AS ENUM ('Todo', 'Done', 'Failed');

CREATE TABLE tasks (
id bigserial primary key,
job_id int not null default floor(random()*10 + 1)::int,
status task_status not null,
added timestamptz not null default now(),
done timestamptz

);

CREATE INDEX ON tasks (added) WHERE status = 'Todo';

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 33/60

Add some tasks

INSERT INTO tasks (status)
SELECT 'Todo' FROM generate_series(1,100) i;

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 34/60

The workload

queue-insert.sql

INSERT INTO tasks (status) VALUES ('Todo');

queue-complete.sql

UPDATE tasks SET status = 'Done', done = NOW()
WHERE id = (SELECT id FROM tasks

WHERE status = 'Todo' ORDER BY added
FOR UPDATE SKIP LOCKED LIMIT 1);

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 35/60

Running the workload

pgbench -n -f queue-insert.sql -f queue-complete.sql \
--rate=2000 -j8 -c8 \
-P 10 -T 600

progress: 10.0 s, 1996.6 tps, lat 4.251 ms stddev 2.994, 0 failed, lag 1.945 ms
progress: 20.0 s, 1991.9 tps, lat 3.897 ms stddev 2.686, 0 failed, lag 1.673 ms
progress: 30.0 s, 1969.4 tps, lat 6.368 ms stddev 13.453, 0 failed, lag 4.003 ms
progress: 40.0 s, 2006.0 tps, lat 4.353 ms stddev 3.135, 0 failed, lag 2.026 ms
progress: 50.0 s, 2008.1 tps, lat 4.225 ms stddev 2.830, 0 failed, lag 1.905 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 36/60

Running the workload

pgbench -n -f queue-insert.sql -f queue-complete.sql \
--rate=2000 -j8 -c8 \
-P 10 -T 600

progress: 10.0 s, 1996.6 tps, lat 4.251 ms stddev 2.994, 0 failed, lag 1.945 ms
progress: 20.0 s, 1991.9 tps, lat 3.897 ms stddev 2.686, 0 failed, lag 1.673 ms
progress: 30.0 s, 1969.4 tps, lat 6.368 ms stddev 13.453, 0 failed, lag 4.003 ms
progress: 40.0 s, 2006.0 tps, lat 4.353 ms stddev 3.135, 0 failed, lag 2.026 ms
progress: 50.0 s, 2008.1 tps, lat 4.225 ms stddev 2.830, 0 failed, lag 1.905 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 36/60

Meanwhile in another part of town

A business analyst using DBeaver:
BEGIN ISOLATION LEVEL REPEATABLE READ;
SELECT COUNT(*) FROM tasks WHERE status = 'Todo';

“Let’s go get a coffee to think about that number. . . ”

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 37/60

Meanwhile in another part of town

A business analyst using DBeaver:
BEGIN ISOLATION LEVEL REPEATABLE READ;
SELECT COUNT(*) FROM tasks WHERE status = 'Todo';

“Let’s go get a coffee to think about that number. . . ”

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 37/60

Back at benchmark central

progress: 90.0 s, 1985.0 tps, lat 17.509 ms stddev 17.266, 0 failed, lag 14.128 ms
progress: 100.0 s, 1654.7 tps, lat 1188.524 ms stddev 343.977, 0 failed, lag 1183.696 ms
progress: 110.0 s, 1552.0 tps, lat 2753.375 ms stddev 686.912, 0 failed, lag 2748.222 ms
progress: 120.0 s, 1353.5 tps, lat 5476.902 ms stddev 987.954, 0 failed, lag 5470.992 ms
progress: 130.0 s, 1280.2 tps, lat 8885.448 ms stddev 1064.684, 0 failed, lag 8879.201 ms
progress: 140.0 s, 1177.2 tps, lat 12687.523 ms stddev 1277.164, 0 failed, lag 12680.729 ms
progress: 150.0 s, 1103.0 tps, lat 17038.791 ms stddev 1365.447, 0 failed, lag 17031.536 ms
progress: 160.0 s, 1047.2 tps, lat 21655.815 ms stddev 1455.754, 0 failed, lag 21648.179 ms
progress: 170.0 s, 985.5 tps, lat 26621.604 ms stddev 1573.951, 0 failed, lag 26613.488 ms
progress: 180.0 s, 923.9 tps, lat 31668.206 ms stddev 1587.211, 0 failed, lag 31659.547 ms
progress: 190.0 s, 918.5 tps, lat 37157.963 ms stddev 1645.525, 0 failed, lag 37149.256 ms
progress: 200.0 s, 877.3 tps, lat 42607.753 ms stddev 1721.361, 0 failed, lag 42598.632 ms
progress: 210.0 s, 853.5 tps, lat 48289.559 ms stddev 1720.792, 0 failed, lag 48280.190 ms
progress: 220.0 s, 788.5 tps, lat 54187.022 ms stddev 1852.551, 0 failed, lag 54176.878 ms
progress: 230.0 s, 751.6 tps, lat 60477.265 ms stddev 1899.692, 0 failed, lag 60466.617 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 38/60

Incident resolution

▶ “Our CPUs are on fire, what is going on?”
▶ “pg_stat_statements says that the queue completion query is 100x slower.”
▶ “I know, let’s get an explain plan!”

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 39/60

The explain plan
1 Update on tasks (actual time=25.273..25.274 rows=0 loops=1)
2 Buffers: shared hit=95467 dirtied=1 written=1
3 I/O Timings: shared write=0.028
4 InitPlan 1 (returns $1)
5 -> Limit (actual time=25.204..25.205 rows=1 loops=1)
6 Buffers: shared hit=95454
7 -> LockRows (actual time=25.204..25.204 rows=1 loops=1)
8 Buffers: shared hit=95454
9 -> Index Scan using tasks_added_idx on tasks tasks_1 (actual time

=25.143.. 25.148 rows= 10 loops=1)
10 Filter: (status = 'Todo'::task_status)

11 Buffers: shared hit=95428
12 -> Index Scan using tasks_pkey on tasks (actual time=25.214..25.215 rows=1 loops=1)
13 Index Cond: (id = $1)
14 Buffers: shared hit=95458
15 Execution Time: 25.292 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 40/60

What’s going on

▶ The open transaction is preventing autovacuum from cleaning up completed
jobs.

▶ Index fills up with old row versions that have actually already been updated.
▶ Due to the open transaction we can’t cache the dead status in the index.

▶ See “Killed Index Tuples” blogpost by Laurenz
▶ Every time we look for a task, we have to scan over the index entries for already

completed tasks.
▶ For each one go and look at the row in the table to see that it has been updated.

▶ None of this is visible in the explain numbers.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 41/60

https://www.cybertec-postgresql.com/en/killed-index-tuples/

What’s going on

▶ The open transaction is preventing autovacuum from cleaning up completed
jobs.

▶ Index fills up with old row versions that have actually already been updated.
▶ Due to the open transaction we can’t cache the dead status in the index.

▶ See “Killed Index Tuples” blogpost by Laurenz
▶ Every time we look for a task, we have to scan over the index entries for already

completed tasks.
▶ For each one go and look at the row in the table to see that it has been updated.

▶ None of this is visible in the explain numbers.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 41/60

https://www.cybertec-postgresql.com/en/killed-index-tuples/

Fixing it

▶ Avoid mixing long queries/transactions and update heavy workloads.
▶ Use statement_timeout, idle_in_transaction_session_timeout to have a

backstop against accidents.
▶ PostgreSQL 17 will also have transaction_timeout.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 42/60

After terminating the naughty connection
1 Update on tasks (actual time=0.308..0.308 rows=0 loops=1)
2 Buffers: shared hit=516
3 InitPlan 1 (returns $1)
4 -> Limit (actual time=0.290..0.291 rows=1 loops=1)
5 Buffers: shared hit=506
6 -> LockRows (actual time=0.290..0.290 rows=1 loops=1)
7 Buffers: shared hit=506
8 -> Index Scan using tasks_added_idx on tasks tasks_1 (actual time

=0.284..0.285 rows=2 loops=1)
9 Filter: (status = 'Todo'::task_status)

10 Buffers: shared hit=504
11 -> Index Scan using tasks_pkey on tasks (actual time=0.294..0.295 rows=1 loops=1)
12 Index Cond: (id = $1)
13 Buffers: shared hit=510
14 Execution Time: 0.328 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 43/60

The missing information

▶ How many rows were scanned but found not visible
▶ How many killed index tuples were skipped over
▶ This also affects sequential scans, it’s just not as easy to see

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 44/60

The invisible visibility map

We need a larger table for this:
CREATE TABLE bigger AS SELECT i, repeat(' ', 100)

FROM generate_series(1,2) j, generate_series(1,3000000) i;

CREATE INDEX ON bigger(i);

VACUUM ANALYZE bigger;

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 45/60

Holy buffer hit count Batman

SELECT i FROM bigger;

1 Index Only Scan using bigger_i_idx on bigger (actual time=0.016..799.596 rows=6000000
loops=1)

2 Heap Fetches: 0
3 Buffers: shared hit= 6014781
4 Planning Time: 0.044 ms
5 Execution Time: 958.258 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 46/60

Holy buffer hit count Batman

SELECT i FROM bigger;

1 Index Only Scan using bigger_i_idx on bigger (actual time=0.016..799.596 rows=6000000
loops=1)

2 Heap Fetches: 0
3 Buffers: shared hit= 6014781
4 Planning Time: 0.044 ms
5 Execution Time: 958.258 ms

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 46/60

What’s going on

▶ Index only scan looks at visibility map to check if we can skip the heap fetch
▶ This happens for each row
▶ It caches the location of the last looked at VM page and skips buffer lookup if

next one is the same.
▶ Example was constructed so this never works out.
▶ Happens in the real world too with random access to tables >256MB

▶ See “Unexpected downsides of UUID keys in PostgreSQL” blogpost

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 47/60

https://www.cybertec-postgresql.com/en/unexpected-downsides-of-uuid-keys-in-postgresql/

Fixing it

▶ Data locality matters.
▶ Use CLUSTER, fillfactor and other tricks to keep data sorted by access patterns.

CLUSTER bigger USING bigger_i_idx;

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 48/60

Fixing it

▶ Data locality matters.
▶ Use CLUSTER, fillfactor and other tricks to keep data sorted by access patterns.

CLUSTER bigger USING bigger_i_idx;

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 48/60

Results

1 Index Only Scan using bigger_i_idx on bigger (actual time=0.017..342.865 rows=6000000
loops=1)

2 Heap Fetches: 0
3 Buffers: shared hit= 14785
4 Planning Time: 0.042 ms
5 Execution Time: 500.547 ms

~2x performance difference just from avoiding visibility map buffer lookups.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 49/60

Chapter 3: Hello? Is this thing on?!

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 50/60

Trip down memory lane

Taking our tasks table from before:
CREATE TABLE tasks (

id bigserial primary key,
job_id int not null default floor(random()*10 + 1)::int,
status task_status not null,
added timestamptz not null default now(),
done timestamptz

);

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 51/60

New goal

We have a query:
SELECT id FROM tasks
WHERE job_id = 3 AND added < '1969-07-20 15:17:40-05'
ORDER BY id;

Lets try a couple of indexes to make it fast

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 52/60

Tale of two indexes
CREATE INDEX j_i_a ON tasks (job_id, id, added);

1 Index Only Scan using j_i_a on tasks (actual time=1.207.. 1.207 rows=0 loops=1)

2 Index Cond : ((job_id = 3) AND (added < '1969-07-20 23:17:40+03'::timestamp with time
zone))

3 Heap Fetches: 0

4 Buffers: shared hit=300

CREATE INDEX job_added_id ON tasks (job_id, added, id);

1 Sort (actual time=0.020.. 0.021 rows=0 loops=1)
2 -> Index Only Scan using j_a_i on tasks (actual time=0.013..0.013 rows=0 loops=1)

3 Index Cond : ((job_id = 3) AND (added < '1969-07-20 23:17:40+03'::timestamp with
time zone))

4 Heap Fetches: 0

5 Buffers: shared hit=3

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 53/60

The answer
▶ Index range scans (col < const) can only be used if all preceding index

columns have equality on them.

▶ With (job_id, id, added) we cannot use added for scanning as it’s unordered:

job_id [3 [3 [3 [3 [3
id 1 2 3 4 7

added 13:35] 17:49] 11:05] 19:12] 09:12]

▶ But we can scan all for a single job_id and use the added for filtering.

▶ The fact that Index Cond is only used for filtering is not visible anywhere in the
explain plan.
▶ Neither is the amount of index tuples scanned and discarded.

▶ Rows Removed by Filter: only includes filters done on table values.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 54/60

Fin

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 55/60

What did we learn today

▶ Explain still doesn’t explain everything
▶ In particular, hidden detoasting and bloat scanning might make things slow.
▶ EXPLAIN is always improving, hopefully we will soon have more visibility.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 56/60

Thank you

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 57/60

Q & A

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 58/60

Bonus content

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 59/60

More things to improve

▶ How many of updates were HOT.
▶ How many pages were pruned while scanning
▶ How many index probes were done during planning
▶ Hint bit updates log WAL, but this doesn’t show up with EXPLAIN (WAL)
▶ SLRU accesses are completely hidden.
▶ Getting explain plans from within functions is quite tricky.
▶ When are extended statistics consulted.
▶ How much time was spent waiting on locks.

Things your explain plan is not telling you Ants Aasma PGConf.DE 2024 60/60

	Hello
	Everybody loves explain
	Crash course on reading EXPLAIN
	Chapter 1: Why am I smelling TOAST
	Chapter 2: I (don’t) see dead tuples
	Chapter 3: Hello? Is this thing on?!
	Fin
	Thank you
	Q & A
	Bonus content

