
What is an SLRU anyway?

Álvaro Herrera – Postgres developer, EDB

Postgres Conference Germany 2025
Berlin

8-9 May 2025

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Who am I?

• Álvaro Herrera, alvherre@kurilemu.de
• Postgres contributor since 2002
• Working as a Postgres developer for 2ndQuadrant/EDB since

2012
• Worked on a number of SLRU-related projects:

• savepoints
• multixacts
• commit timestamps

• I also came up with autovacuum, background workers, BRIN indexes, and more
• Feel free to grab hold of me on hallways to talk about stuff

mailto:alvherre@kurilemu.de
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Talk structure

1 Historical review of SLRU development
2 Report of an SLRU performance problem
3 Description of the solution

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

What is an SLRU?

• A very bad name for user-visible feature
• Simple Least Recently Used
• A mechanism to store transactional metadata

• And things with similar behavior
• Examples:

• Transaction commit/abort status
• LISTEN / NOTIFY data
• transaction commit times

• Keeps memory buffer of on-disk data

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Historical review of SLRU development

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History: 1. pg_clog

• Problem: after 4 billion transactions, your database ist total
kaputt 1

• Fix: Simplistic pg_log pseudo-relation is replaced with
pg_clog

• Commit 2589735da08c:
Replace implementation of pg_log as a relation accessed through the buffer
manager with ’pg_clog’, a specialized access method modeled on pg_xlog.
Tom Lane

Sat Aug 25 2001, Postgres 7.2
1Transaction ID wraparound: problem and proposed solution (Fri 03 Nov 2000)

https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c4e597accb6eab5ae65b6339ee630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c4e597accb6eab5ae65b6339ee630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c4e597accb6eab5ae65b6339ee630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c4e597accb6eab5ae65b6339ee630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=2589735da08c4e597accb6eab5ae65b6339ee630
https://www.postgresql.org/message-id/flat/8382.973291660%40sss.pgh.pa.us
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Transaction status storage

• Reading a tuple requires looking up status of its creating and
deleting transactions

• Two bits per transaction id (xid):
• 00 → “in-progress”
• 01 → “aborted”
• 10 → “committed”

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

How pg_clog works

• 0x8000 (decimal 32768) transactions per 8kB page
• 8 in-memory pages store the status of

32768 ∗ 8 = 262144 = 256k transactions
• 32 pages per file

• after 1M transactions, a file can be removed
• “wraparound” is now possible

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

How pg_clog works (2)

• At this point, LRU is an internal pg_clog implementation
detail

• Harcoded buffer size of 8 pages
• Much later, pg_clog was renamed pg_xact, commit

88e66d193fba (2017).

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

How pg_clog works (3)

• If transaction committed long enough ago, “hint bits” are set
in the “infomask”

• When tuples are “hinted”, no pg_clog lookups
• Old pg_clog segments no longer needed

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History: 2. slru.c

• My first big project: SAVEPOINTS (geb. “nested transactions”)
• slru.c was born from pg_clog to support this
• Commit 0abe7431c6d7:

This patch extracts page buffer pooling and the simple least-recently-used
strategy from clog.c into slru.c.
Manfred Koizar (via Bruce Momjian)

Wed Jun 11 2003, Postgres 7.4

• The term “slru” was invented at this point
• Nobody thought that this name would ever be exposed to users

https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7a022e7f24a4f145c702900f56174
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7a022e7f24a4f145c702900f56174
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7a022e7f24a4f145c702900f56174
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7a022e7f24a4f145c702900f56174
https://git.postgresql.org/cgit/postgresql.git/commit/?id=0abe7431c6d7a022e7f24a4f145c702900f56174
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History: 3. pg_subtrans

• Nested transactions
• Commit 573a71a5da70:

Nested transactions.
Álvaro Herrera, with some help from Tom Lane

Thu Jul 1 2004, Postgres 8.0

• pg_subtrans: needed to store parent TransactionId for each
subtransaction

• First user of slru.c outside of pg_clog.c

https://git.postgresql.org/cgit/postgresql.git/commit/?id=573a71a5da70d6e2503c8f53e3b4f26b3b6d738d
https://git.postgresql.org/cgit/postgresql.git/commit/?id=573a71a5da70d6e2503c8f53e3b4f26b3b6d738d
https://git.postgresql.org/cgit/postgresql.git/commit/?id=573a71a5da70d6e2503c8f53e3b4f26b3b6d738d
https://git.postgresql.org/cgit/postgresql.git/commit/?id=573a71a5da70d6e2503c8f53e3b4f26b3b6d738d
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

How does pg_subtrans work?

• 4 bytes per transaction (16x larger than pg_clog!)
• 8 pages of 8kB each have room for 16k transactions
• But what is pg_subtrans for?

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

What is pg_subtrans for?

Without subtransactions, answering whether a transaction is
running is easy reading only memory:

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

What is pg_subtrans for? (2)

• pg_subtrans responds to “is transaction X running?” in
presence of subtransactions

• ... only needed for transactions with >64 subtransactions

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History: pg_multixact

• Commit d1e027221d02:
Implement sharable row-level locks, and use them for foreign key references to
eliminate unnecessary deadlocks.
Álvaro Herrera and Tom Lane

Thu Apr 28 2005, Postgres 8.1

• pg_multixact: A two-level mechanism to store variable-sized
arrays using fixed-size slru addressing

https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

foreign keys: avoiding SELECT FOR UPDATE

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

foreign keys: SELECT FOR SHARE to the rescue

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

How does pg_multixact work?

• Each MultiXactId is a pointer to pg_multixact/offset
• Each multixact offset is a pointer to pg_multixact/members
• We know how many members to read by reading the offset

after ours

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History 5: Variable sized SLRUs

• Commit 887a7c61f630:
Get rid of slru.c’s hardwired insistence on a fixed number of slots per SLRU
area. The number of slots is still a compile-time constant (someday we might
want to change that), but at least it’s a different constant for each SLRU area.
Increase number of subtrans buffers to 32 based on experimentation with a
heavily subtrans-bashing test case, and increase number of multixact member
buffers to 16, since it’s obviously silly for it not to be at least twice the number
of multixact offset buffers.
Tom Lane

Tue Dec 6 2005, Postgres 8.2

https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History 5: Variable sized SLRUs

• Commit 887a7c61f630:
Get rid of slru.c’s hardwired insistence on a fixed number of slots per SLRU
area. The number of slots is still a compile-time constant (someday we might
want to change that), but at least it’s a different constant for each SLRU area.
Increase number of subtrans buffers to 32 based on experimentation with a
heavily subtrans-bashing test case, and increase number of multixact member
buffers to 16, since it’s obviously silly for it not to be at least twice the number
of multixact offset buffers.
Tom Lane

Tue Dec 6 2005, Postgres 8.2

https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History 5: Variable sized SLRUs

• Commit 887a7c61f630:
Get rid of slru.c’s hardwired insistence on a fixed number of slots per SLRU
area. The number of slots is still a compile-time constant (someday we might
want to change that), but at least it’s a different constant for each SLRU area.
Increase number of subtrans buffers to 32 based on experimentation with a
heavily subtrans-bashing test case, and increase number of multixact member
buffers to 16, since it’s obviously silly for it not to be at least twice the number
of multixact offset buffers.
Tom Lane

Tue Dec 6 2005, Postgres 8.2

https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=887a7c61f630
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

(Short) theory of operation

Why a small number of buffers? Here’s how it works:
1 Scan linearly the array of buffers to see if one contains the

page we want
2 If we find it, we’re done
3 If not, the scan has chosen a “victim” buffer to evict (least

recently used)
1 Evict it, leaving buffer free
2 Load our page onto our buffer
3 Increment “recently used” counter

4 Now the page in buffer can be processed

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

(Short) theory of operation

Why a small number of buffers? Here’s how it works:
1 Scan linearly the array of buffers to see if one contains the

page we want
2 If we find it, we’re done
3 If not, the scan has chosen a “victim” buffer to evict (least

recently used)
1 Evict it, leaving buffer free
2 Load our page onto our buffer
3 Increment “recently used” counter

4 Now the page in buffer can be processed

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History 6: pg_notify

• Commit d1e027221d02:
Replace the pg_listener-based LISTEN/NOTIFY mechanism with an in-memory
queue.
Joachim Wieland (via Tom Lane)
Tue Feb 16 2010, Postgres 9.0

• This allowed NOTIFY to carry user-specified payload

• SLRU buffer of 8 pages
• ... but pages only have to be retained until all backends read

notification messages
• ... which happens as soon as they run any command at all
• Small chances of overflowing the buffer

https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d1e027221d0243b7b57eabb0e482923dd7d1c8eb
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History 7: pg_serial

• Commit dafaa3efb75c:
Implement genuine serializable isolation level.
Kevin Grittner and Dan Ports
Tue Feb 8 2011, Postgres 9.1

• First SERIALIZABLE implementation using serializable snapshot isolation (best
in class)

• SLRU buffer of 16 pages
• ... but lookups only occur once per command in serializable

transactions
• Much lower frequency
• Each item is 8 bytes long

https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce1aae2e6dbefaf6f3a889dea0d21
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce1aae2e6dbefaf6f3a889dea0d21
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce1aae2e6dbefaf6f3a889dea0d21
https://git.postgresql.org/cgit/postgresql.git/commit/?id=dafaa3efb75ce1aae2e6dbefaf6f3a889dea0d21
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History 8: Make pg_clog size adaptive

• Commit 33aaa139e630:
Make the number of CLOG buffers adaptive, based on shared_buffers.
Robert Haas
Fri Jan 6 2012, Postgres 9.2

• First case of runtime-determined SLRU size

• 32 buffers with shared_buffers = 128 MB and up
• But not directly configurable!

https://git.postgresql.org/cgit/postgresql.git/commit/?id=33aaa139e630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=33aaa139e630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=33aaa139e630
https://git.postgresql.org/cgit/postgresql.git/commit/?id=33aaa139e630
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Development History: 9. pg_commit_ts

• Commit Timestamps
• Commit 73c986adde5d:

Keep track of transaction commit timestamps
Álvaro Herrera
Wed Dec 3 2014, Postgres 9.5

• 12 bytes per entry
• For use with BDR

• open-source bi-directional replication implementation
• uses timestamp for simplistic conflict resolution

• Size is adaptive like pg_clog, but grows more slowly and the upper limit is
smaller (16 buffers)

• (Theory behind this: not needed for long)

https://git.postgresql.org/cgit/postgresql.git/commit/?id=73c986adde5d73a5e2555da9b5c8facedb146dcd
https://git.postgresql.org/cgit/postgresql.git/commit/?id=73c986adde5d73a5e2555da9b5c8facedb146dcd
https://git.postgresql.org/cgit/postgresql.git/commit/?id=73c986adde5d73a5e2555da9b5c8facedb146dcd
https://git.postgresql.org/cgit/postgresql.git/commit/?id=73c986adde5d73a5e2555da9b5c8facedb146dcd
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

What SLRUs exist

• pg_commit (neé pg_clog), adaptive 8-32 pages
• pg_subtrans, 32 pages
• pg_multixact/offset, 8 pages
• pg_multixact/members, 16 pages
• pg_notify, 8 pages
• pg_serial, 8 pages
• pg_commit_ts, adaptive 8-16 pages
• Total memory use: 88 pages = between 704 kB and 960 kB

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Developments for PostgreSQL 17

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Borodin: Performance Problem Reported

Andrey Borodin reports to pgsql-hackers:
I’m investigating some cases of reduced database performance due to Mul-
tiXactOffsetLock contention (80% MultiXactOffsetLock, 20% IO DataFi-
leRead). The problem manifested itself during index repack and constraint
validation. Both being effectively full table scans.

pgsql-hackers: MultiXact\SLRU buffers configuration

(Fri, 8 May 2020)

https://postgr.es/m/2BEC2B3F-9B61-4C1D-9FB5-5FAB0F05EF86@yandex-team.ru
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Borodin: Performance Problem Reported (2)

database=# SELECT pid, wait_event, wait_event_type, state, query
database-# FROM pg_stat_activity \watch 1

pid | wait_event | wait_event_type | state | query
-------+----------------------------+-----------------+--------+--
41344 | ClientRead | Client | idle | insert into t1 select generate_series(1,1000000,1)
41375 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share
41377 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share
41378 | | | active | select * from t1 where i = ANY ($1) for share
41379 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share
41381 | | | active | select * from t1 where i = ANY ($1) for share
41383 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share
41385 | MultiXactOffsetControlLock | LWLock | active | select * from t1 where i = ANY ($1) for share

(8 rows)

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Borodin: Performance Problem Reported (3)

Andrey Borodin:
I’ve found out that:
1. When MultiXact working set does not fit into buffers -
benchmark results grow very high. Yet, very big buffers slow
down benchmark too. For this benchmark optimal SLRU
size [is] 32 pages for offsets and 64 pages for members
(defaults are 8 and 16 respectively).

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Darold: Patch Benchmarking Results

Gilles Darold:
Some time ago I have encountered a contention on MultiXactOffsetContro-
lLock with a performance benchmark. Here are the wait event monitoring
result with a polling each 10 seconds and a 30 minutes run for the bench-
mark:

event_type | event | sum
------------+----------------------------+----------
Client | ClientRead | 44722952
LWLock | MultiXactOffsetControlLock | 30343060
LWLock | multixact_offset | 16735250
LWLock | MultiXactMemberControlLock | 1601470
LWLock | buffer_content | 991344

https://postgr.es/m/6ba7eae2-8b0c-0690-11a5-e921e6586180@darold.net
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Darold: Patch Benchmarking Results (2)

Gilles Darold:
After reading this thread I changed the value of the buffer size to 32 and
64 and obtain the following results:

event_type | event | sum
------------+----------------------------+-----------
Client | ClientRead | 268297572
LWLock | MultiXactMemberControlLock | 65162906
LWLock | multixact_member | 33397714
LWLock | buffer_content | 4737065

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Darold: Patch Benchmarking Results (3)

Gilles Darold:
I have increased the buffers to 128 and 512 and obtain the best results for
this benchmark:
Increasing buffer sizes to (128, 512)

event_type | event | sum
------------+----------------------------+-----------
Client | ClientRead | 160463037
LWLock | MultiXactMemberControlLock | 5334188
LWLock | buffer_content | 5228256
LWLock | buffer_mapping | 2368505
LWLock | SubtransControlLock | 2289977

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Increasing Buffer Sizes is not Enough

Andrey Borodin again:
I have one more idea inspired by CPU caches. Let’s make SLRU n-
associative, where n ˜ 8. We can divide buffers into "banks", number of
banks must be power of 2. All banks are of equal size. We choose bank
size to approximately satisfy user’s configured buffer size. Each page can
live only within one bank. We use same search and eviction algorithms as
we used in SLRU, but we only need to search/evict over 8 elements.

• pgsql-hackers: MultiXact\SLRU buffers configuration
(Sun, 11 Apr 2021)

• Dividing the buffers in banks allows much larger buffer sizes
• ... without affecting performance of buffer search

https://postgr.es/m/494C5E7F-E410-48FA-A93E-F7723D859561@yandex-team.ru
https://postgr.es/m/494C5E7F-E410-48FA-A93E-F7723D859561@yandex-team.ru
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

SLRU banks

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

New Kid in Town: pg_stat_slru

• pg_stat_slru was born as the initial problem was being
discussed

• Commit 28cac71bd368:
Collect statistics about SLRU caches
Tomas Vondra

Thu Apr 2 2020, Postgres 13

• No motivation for this work was admitted other than healthy
scientific curiosity

https://git.postgresql.org/cgit/postgresql.git/commit/?id=28cac71bd368
https://git.postgresql.org/cgit/postgresql.git/commit/?id=28cac71bd368
https://git.postgresql.org/cgit/postgresql.git/commit/?id=28cac71bd368
https://git.postgresql.org/cgit/postgresql.git/commit/?id=28cac71bd368
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Example pg_stat_slru

SELECT name, blks_zeroed, blks_hit, blks_read, blks_written
FROM pg_stat_slru;

name blks_zeroed blks_hit blks_read blks_written

commit_timestamp 1284048 387594150 54530 1305858
multixact_member 30252 23852620477 48555852 26106
multixact_offset 10637 23865848376 18434993 9375
notify 0 0 0 0
serializable 0 0 0 0
subtransaction 513486 12127027243 153119082 431238
transaction 32107 22450403108 72043892 18064
other 0 0 0 0

(“name” column differs in versions prior to 17)

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Finalizing a Solution

• Dilip Kumar further analyzed the problem as reported by
customers, created additional pgbench reproducer workloads
and posted a new proposal:
Just increasing the size of the buffer pool doesn’t necessarily help, because
the linear search that we use for buffer replacement doesn’t scale ...

• (We know! Which is why the patch uses banks)
... and also because contention on the single centralized lock limits its
scalability.

https://postgr.es/m/CAFiTN-vzDvNz=ExGXz6gdyjtzGixKSqs0mKHMmaQ8sOSEFZ33A@mail.gmail.com
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Proposed Changes to SLRUs

In addition to Andrey Borodin’s ideas:
• Configurable buffer sizes
• Split each SLRU area in banks

Dilip Kumar proposed:
• Modify operations to LRU counter to use atomic access
• Make the locking occur per bank rather than globally

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Operating with atomics

1 Scan linearly the array of buffers to see if one contains the
page we want

2 If we find it, we’re done
3 If not, the scan has chosen a “victim” buffer to evict (least

recently used)
1 Evict it, leaving buffer free
2 Load our page onto our buffer
3 Increment “recently used” counter using atomic ops

4 Now the page in buffer can be processed

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Restricting the scan to banks

1 Scan linearly the array of buffers of the bank that contains the
page to see if one contains the page we want

2 If we find it, we’re done
3 If not, the scan has chosen a “victim” buffer to evict (least

recently used)
1 Evict it, leaving buffer free
2 Load our page onto our buffer
3 Increment “recently used” counter using atomic ops

4 Now the page in buffer can be processed

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Subtransaction TPS improvement

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Multixact TPS improvement

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Performance Fixes in Postgres 17

• Commit d172b717c6f4:
Use atomic access for SlruShared->latest_page_number
Dilip Kumar (via Álvaro Herrera)

Tue Feb 6 2024, Postgres 17

• Commit 53c2a97a9266:
Improve performance of subsystems on top of SLRU
Andrey Borodin and Dilip Kumar (via Álvaro Herrera)

Wed Feb 28 2024, Postgres 17

https://git.postgresql.org/cgit/postgresql.git/commit/?id=d172b717c6f436738cc8383a4e9f611ae227fd93
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d172b717c6f436738cc8383a4e9f611ae227fd93
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d172b717c6f436738cc8383a4e9f611ae227fd93
https://git.postgresql.org/cgit/postgresql.git/commit/?id=d172b717c6f436738cc8383a4e9f611ae227fd93
https://git.postgresql.org/cgit/postgresql.git/commit/?id=53c2a97a92665be6bd7d70bd62ae6158fe4db96e
https://git.postgresql.org/cgit/postgresql.git/commit/?id=53c2a97a92665be6bd7d70bd62ae6158fe4db96e
https://git.postgresql.org/cgit/postgresql.git/commit/?id=53c2a97a92665be6bd7d70bd62ae6158fe4db96e
https://git.postgresql.org/cgit/postgresql.git/commit/?id=53c2a97a92665be6bd7d70bd62ae6158fe4db96e
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

The New GUCs

• A few must be set to nonzero values, defaults similar as before
• Up to 1024 MB in multiples of 16 (the bank size)�

SLRU buffers (change requires restart)
multixact_offset_buffers = 16
multixact_member_buffers = 32
notify_buffers = 16
serializable_buffers = 32

� �

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

The New GUCs: autoscaling

• A few are automatically derived from shared_buffers�
SLRU buffers (change requires restart)
commit_timestamp_buffers = 0
subtransaction_buffers = 0
transaction_buffers = 0

� �
• 2 MB for each 1024 MB of shared_buffers
• Up to a maximum of 8 MB
• Can still be set manually

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Action Items for Postgres DBAs

• Add pg_stat_slru to monitoring
• Upgrade to Postgres 17
• Track whether any of the SLRUs need to be reconfigured

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Suggested Monitoring Query

�
SELECT name, blks_zeroed, blks_read,

blks_hit+blks_read AS blks_accessed,
CASE WHEN blks_hit+blks_read = 0 THEN 'NaN'
ELSE (blks_hit::numeric / (blks_hit+blks_read))

::numeric(4,2) END AS hit_ratio
FROM pg_stat_slru;

� �

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Another Talk on this Topic

“SLRU Performance Issues: How we have optimized it”,
Dilip Kumar, PGConf.dev 2024

https://www.pgevents.ca/events/pgconfdev2024/schedule/session/53-problem-in-postgresql-slru-and-how-we-are-optimizing-it/
https://www.pgevents.ca/events/pgconfdev2024/schedule/session/53-problem-in-postgresql-slru-and-how-we-are-optimizing-it/
https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Future Work

• Use per-bank LRU counters
• avoids latency of atomic ops

• Improve LRU algorithm
• Ants Aasma has said he has better code; waiting for him to

post it
• I’m especially hoping it’ll avoid my stupid use of integer

division

https://www.enterprisedb.com/
https://2025.pgconf.de/

Historical review of SLRU development Developments for PostgreSQL 17

Thanks!

Questions?

Álvaro Herrera, EDB
EDB (geb. EnterpriseDB)

alvherre@kurilemu.de
Mastodon: https://lile.cl/@alvherre/

https://enterprisedb.com/
mailto:alvherre@kurilemu.de
https://lile.cl/@alvherre
https://www.enterprisedb.com/
https://2025.pgconf.de/

	Historical review of SLRU development
	Developments for PostgreSQL 17

