== Microsoft

Myths and Truths about
Synchronous Replication
in PostgreSQL

Alexander Kukushkin
PGConf.DE 2025, Berlin

h_2025-05-09




Alexander Kukushkin

Principal Software Engineer @ Microsoft

About me The Patroni guy

akukushkin@microsoft.com



https://twitter.com/Microsoft
mailto:alexander.kukushkin@zalando.de

Write-Ahead Log (WAL)

A standard method for ensuring data integrity
Used for recovery, archives, replication, etc...

http://www.postagresal.ora/docs/current/static/wal-intro.html

> 1s -1 pg wal/

total 950276

akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin

akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin
akukushkin

16777216
16777216
16777216
16777216
16777216
16777216
16777216
16777216
16777216
16777216
16777216
16777216

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

W WWOWWWWYWWOWOWOWw

15:
15:
15
15;:
15:
15:
15::
15
15:
15:
15
15

28
28
28
28
28
28
28
28
28
28
28
28

000000010000000000000001
000000010000000000000002
000000010000000000000003
000000010000000000000004
000000010000000000000005
000000010000000000000006
000000010000000000000007
000000010000000000000008
000000010000000000000009
00000001000000000000000A
00000001000000000000000B
00000001000000000000000C


http://www.postgresql.org/docs/current/static/wal-intro.html

Replication

® |og-Shipping (Continuous Archiving and PITR)
o archive_command / restore_ command

e Streaming replication

o Physical replication
o Logical replication


https://www.postgresql.org/docs/current/continuous-archiving.html
https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION

Physical streaming replication

standby

primary
walsender ]«—»[ walreceiver startup ]




Streaming replication

® Asynchronous
o default, primary doesn’t wait

e Synchronous

O

primary waits until standby(s) confirm that they
wrote/flushed/applied commit WAL record
synchronous_commit = remote_write/on/remote_apply
synchronous_standby names = 'my_standby'



synchronous_commit

value local durable standby durable standby durable standby query
commit commit after PG crash | commit after OS crash consistency
remote_apply 4
on
remote_write %4
local 4

off




Synchronous replication types

® priority
o synchronous_standby names = 'FIRST 1 (nodel, node2)’
o waits for confirmation from first nodes in the list
o if nodel failed, waits for node2

® quorum
o synchronous_standby names = 'ANY 1 (nodel, node2)’
o waits for confirmation from any node



Transaction is committed after receiving
confirmation from synchronous standby
nodes.



Truth

Transaction is always committed locally first!

Primary holds locks until commit WAL record is confirmed
to be received/flushed/applied by standby nodes

Locks are released and transaction becomes visible when
sufficient number standby nodes confirmed, when query
is cancelled, connection is broken, or Postgres is restarted

10



synchronous_commit = remote_apply




Myth Ne2

Synchronous replication guarantees Zero
Recovery Point Objective (RPO) / no data
loss



Truth

e |t depends!

® synchronous_commit = local could be set per connection
o disables waiting for synchronous nodes

® transaction becomes visible when lock wait is cancelled:
o Query cancellation
o TCP connection reset
O Postgres restart

13



postgres=# alter system set synchronous standby names = 'unknown';
ALTER SYSTEM
postgres=# select pg reload conf();

pg reload conf

postgres=# show synchronous standby names;
synchronous standby names

unknown

(1 row)

postgres=# show synchronous commit;
synchronous commit

on

(1 row)

postgres=# create table test as select i from generate series(0, 100) 1i;
~CCancel request sent
WARNING: canceling wait for synchronous replication due to user request
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
SELECT 101
postgres=# select count(*) from test;
count



Cancelled wait problem

If wait is cancelled, transaction is immediately visible to

other connections, even if it wasn’t confirmed by standby

nodes!

o If primary fails there could be a visible data loss when
synchronous standby is promoted.

Postgres should disallow cancellation of wait for sync
replication. Discussion on #pgsql-hackers

15


https://www.postgresql.org/message-id/flat/C1F7905E-5DB2-497D-ABCC-E14D4DEE506C%40yandex-team.ru

Cancelled wait problem (continue)

e |f TCP connection is interrupted application doesn’t know
whether transaction was committed or not!

e Finding transaction state (e.g. before retrying)
o Two Phase Commit (2PC)
o txid status(bigint) function -> committed, aborted, in

progress, or null

16


https://www.postgresql.org/docs/current/functions-info.html

postgres=# begin;
create table test as select i from generate series(0, 100) i;
select txid current();

commit;

BEGIN

SELECT 101

txid current

(1 row)

Killed

$ psql -U postgres -h localhost

psql (17.2 (Ubuntu 17.2-1.pgdg22.04+1))
Type "help" for help.

postgres=# select txid status(764);
txid status

committed

(1 row)

postgres=# select pid, query, wait event type, wait event
from pg stat activity where backend xid = 764;

pid | query | wait event type | wait event
————————— e e e
1029064 | commit; | IPC | SyncRep
(1 row)

17



Myth Ne3

Reading from sync standby nodes is like
reading from the primary.



Truth

e Not entirely!
e transaction on standby is immediately visible

o primary could be still waiting for more standby nodes
to confirm!

e Never do write based on read from standby!

19



Side effects

® Asynchronous standby nodes can be ahead of sync nodes
® Logical replication connections as well

o Logical failover slots (PG17) or pg failover slots

extension help to mitigate it.

® Quorum-based synchronous replication
o we don’t know which nodes confirmed transaction!

20


https://www.postgresql.org/docs/current/logicaldecoding-explanation.html#LOGICALDECODING-REPLICATION-SLOTS-SYNCHRONIZATION
https://github.com/EnterpriseDB/pg_failover_slots/

Read from standby after write to primary

e synchronous_standby names ='N (nodel, ..., nodeN)'

® wait (in a loop) until standby caught up:
o pg_current_wal_insert_Isn() + pg_last_wal_replay_Isn()

o txid_current() + txid_status()

e Future work: Wait for LSN replay function

21



We just need to promote synchronous
replica to avoid data loss



Truth

® Yes. But...

Let’s assume we have a nodel (primary), and node2 (async
standby)

we set synchronous_standby _names = 'node2’

SELECT pg_reload_conf()

and... nodel (primary) crashed

Are you sure latest transactions made to node2?

23



Synchronous replication for HA

SET synchronous_standby names

SELECT pg_reload_conf()

wait until GUC change becomes visible (reload isn’t instant)
remember pg_current_wal_insert_Isn() => 'X/YZ'

wait until standby received/flushed/applied LSN from 4

Al S

Only after that you can count standby as synchronous

24



Myth Ne5

With synchronous replication we don’t
need pg_rewind



https://www.postgresql.org/docs/current/app-pgrewind.html

Truth

e WAL on primary is written independently from standby
nodes and generated not only by transactions (e.g. VACUUM)
e There is always a chance that sync standby didn’t received
some parts of WAL
o Doesn’t mean there is a data loss!
o However, pg_rewind is required.

26



Myth N26

Synchronous replication is slow



“Benchmarking” synchronous replication

laptop + docker-compose (3 containers) + iproute2 (tc) to
emulate latency

o Default Postgres config, max_connections = 252
pgbench -i -s 100

pghench -c Sconnection_num -T 60

o where connection_num =10, 50, 100, 150, 200, 250
synchronous_commit = on
synchronous_standby names = 'FIRST|ANY 1 (*)'

28


https://manpages.debian.org/unstable/iproute2/tc.8.en.html

How RTT influence TPS and latency

pgbench TPS and latency

RTT between nodes = 1ms

Latency (ms) Latency quorum (ms) [ Latency priority (ms) == TPS == TPS quorum == TPS priority
6000 — - 100
-+ 75
4000 +
v
E
@ T 3
- c
2
2000 4 8
- 25
0 0

10 50 100 150 200 250

Connections



How RTT influence TPS and latency

pgbench TPS and latency

RTT between nodes = 5ms

Latency (ms) Latency quorum (ms) [ Latency priority (ms) == TPS == TPS quorum == TPS priority
6000 — - 100
£ 175
4000 + 69
v
E
& —__B58 - 50 >
[ c
2
2000 4 39 8
2 46 - 25
35
18 29
15 =
0 3 0
10 50 100 150 200 250

Connections



How RTT influence TPS and latency

pgbench TPS and latency

RTT between nodes = 10ms

Latency (ms) Latency quorum (ms) [ Latency priority (ms) == TPS == TPS quorum == TPS priority
6000 — - 100
78 -+ 75
4000 +
61 é
g -+ 50 5
45 9
2000 + g
32
46 T 20
22 29 35
15 =
0 3 0
10 50 100 150 200 250

Connections



How RTT influence TPS and latency

pgbench TPS and latency

RTT between nodes = 100ms

Latency (ms) Latency quorum (ms) [ Latency priority (ms) == TPS == TPS quorum == TPS priority
6000 — -T- 400
309 =-1T= 300
4000 -+ 280 _
(2]}
E
Y -+ 200
& 202 9)
2L
©
2000 + 147 =
114 - 100
46
0 5 15, 20 29 35 5
10 50 100 150 200 250

Connections



Truth

Depends on hardware and on RTT between nodes
o Don’t run synchronous nodes between continents!

Additional latency due to clients waiting until sync standbys
confirmed that they received/flushed/applied transaction
o Lower TPS with the same amount of connections

You can scale TPS by increasing connections
o Final TPS will be lower!

33



Bonus: quorum commit is not AZ-aware!

synchronous_standby names ='ANY 3 (nodel, node2, node3, node4, node5)

34



Bonus: what to do on failover

e synchronous_standby names ="'N (nodel, ..., nodeN)'
o Pick any node. However, better to choose the most
up-to-date
e synchronous_standby names ="'N (hodel, ..., nodeM)’
o Need to get responses from M-N+1 nodes to find the

synchronous

35



Bonus: quorum-based failover (example)

synchronous_standby_names = 'ANY 2 (nodel, node2, node3, node4)

We need to see at least 3
nodes to find at least 1
synchronous among them!

36



Questions?




