
Муths and Truths about
Synchronous Replication
in PostgreSQL

Alexander Kukushkin

PGConf.DE 2025, Berlin

 2025-05-09

About me

Alexander Kukushkin

Principal Software Engineer @Microsoft

The Patroni guy

akukushkin@microsoft.com

2

https://twitter.com/Microsoft
mailto:alexander.kukushkin@zalando.de

Write-Ahead Log (WAL)

● A standard method for ensuring data integrity
● Used for recovery, archives, replication, etc…
● http://www.postgresql.org/docs/current/static/wal-intro.html

3

http://www.postgresql.org/docs/current/static/wal-intro.html

Replication

● Log-Shipping (Continuous Archiving and PITR)

○ archive_command / restore_command

● Streaming replication

○ Physical replication

○ Logical replication

4

https://www.postgresql.org/docs/current/continuous-archiving.html
https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION

Physical streaming replication

5

primary standby

walsender walreceiver

pg_wal pg_wal

startup

Streaming replication

● Asynchronous
○ default, primary doesn’t wait

● Synchronous
○ primary waits until standby(s) confirm that they

wrote/flushed/applied commit WAL record
○ synchronous_commit = remote_write/on/remote_apply
○ synchronous_standby_names = 'my_standby'

6

synchronous_commit

7

value local durable
commit

standby durable
commit after PG crash

standby durable
commit after OS crash

standby query
consistency

remote_apply ✅ ✅ ✅ ✅

on ✅ ✅ ✅

remote_write ✅ ✅

local ✅

off

Synchronous replication types

● priority
○ synchronous_standby_names = 'FIRST 1 (node1, node2)'
○ waits for confirmation from first nodes in the list
○ if node1 failed, waits for node2

● quorum
○ synchronous_standby_names = 'ANY 1 (node1, node2)'
○ waits for confirmation from any node

8

Myth №1

Transaction is committed after receiving

confirmation from synchronous standby

nodes.

9

Truth

● Transaction is always committed locally first!

● Primary holds locks until commit WAL record is confirmed
to be received/flushed/applied by standby nodes

● Locks are released and transaction becomes visible when
sufficient number standby nodes confirmed, when query
is cancelled, connection is broken, or Postgres is restarted

10

synchronous_commit = remote_apply

11

primary standby

walsender walreceiver

pg_wal pg_wal

startupapp

commit

commit

��

Myth №2

Synchronous replication guarantees Zero

Recovery Point Objective (RPO) / no data

loss

12

Truth

● It depends!

● synchronous_commit = local could be set per connection

○ disables waiting for synchronous nodes

● transaction becomes visible when lock wait is cancelled:

○ Query cancellation

○ TCP connection reset

○ Postgres restart
13

Cancelled wait problem (example)

14

Cancelled wait problem

● If wait is cancelled, transaction is immediately visible to
other connections, even if it wasn’t confirmed by standby
nodes!
○ If primary fails there could be a visible data loss when

synchronous standby is promoted.

● Postgres should disallow cancellation of wait for sync
replication. Discussion on #pgsql-hackers

15

https://www.postgresql.org/message-id/flat/C1F7905E-5DB2-497D-ABCC-E14D4DEE506C%40yandex-team.ru

Cancelled wait problem (continue)

● If TCP connection is interrupted application doesn’t know

whether transaction was committed or not!

● Finding transaction state (e.g. before retrying)

○ Two Phase Commit (2PC)

○ txid_status(bigint) function -> committed, aborted, in

progress, or null

16

https://www.postgresql.org/docs/current/functions-info.html

txid_status()

17

Myth №3

Reading from sync standby nodes is like

reading from the primary.

18

Truth

● Not entirely!

● transaction on standby is immediately visible

○ primary could be still waiting for more standby nodes

to confirm!

● Never do write based on read from standby!

19

Side effects

● Asynchronous standby nodes can be ahead of sync nodes

● Logical replication connections as well

○ Logical failover slots (PG17) or pg_failover_slots

extension help to mitigate it.

● Quorum-based synchronous replication

○ we don’t know which nodes confirmed transaction!

20

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html#LOGICALDECODING-REPLICATION-SLOTS-SYNCHRONIZATION
https://github.com/EnterpriseDB/pg_failover_slots/

Read from standby after write to primary

● synchronous_standby_names = 'N (node1, …, nodeN)'

● wait (in a loop) until standby caught up:

○ pg_current_wal_insert_lsn() + pg_last_wal_replay_lsn()

○ txid_current() + txid_status()

● Future work: Wait for LSN replay function

21

Myth №4

We just need to promote synchronous

replica to avoid data loss

22

Truth

● Yes. But…
● Let’s assume we have a node1 (primary), and node2 (async

standby)

● we set synchronous_standby_names = 'node2'

● SELECT pg_reload_conf()

● and… node1 (primary) crashed

● Are you sure latest transactions made to node2?

23

Synchronous replication for HA

1. SET synchronous_standby_names

2. SELECT pg_reload_conf()

3. wait until GUC change becomes visible (reload isn’t instant)

4. remember pg_current_wal_insert_lsn() => 'X/YZ'

5. wait until standby received/flushed/applied LSN from 4

Only after that you can count standby as synchronous

24

Myth №5

With synchronous replication we don’t

need pg_rewind

25

https://www.postgresql.org/docs/current/app-pgrewind.html

Truth

● WAL on primary is written independently from standby

nodes and generated not only by transactions (e.g. VACUUM)

● There is always a chance that sync standby didn’t received

some parts of WAL

○ Doesn’t mean there is a data loss!

○ However, pg_rewind is required.

26

Myth №6

Synchronous replication is slow

27

“Benchmarking” synchronous replication

● laptop + docker-compose (3 containers) + iproute2 (tc) to
emulate latency
○ Default Postgres config, max_connections = 252

● pgbench -i -s 100
● pgbench -c $connection_num -T 60

○ where connection_num = 10, 50, 100, 150, 200, 250
● synchronous_commit = on
● synchronous_standby_names = 'FIRST|ANY 1 (*)'

28

https://manpages.debian.org/unstable/iproute2/tc.8.en.html

How RTT influence TPS and latency

29

How RTT influence TPS and latency

30

How RTT influence TPS and latency

31

How RTT influence TPS and latency

32

Truth

● Depends on hardware and on RTT between nodes

○ Don’t run synchronous nodes between continents!

● Additional latency due to clients waiting until sync standbys
confirmed that they received/flushed/applied transaction
○ Lower TPS with the same amount of connections

● You can scale TPS by increasing connections
○ Final TPS will be lower!

33

Bonus: quorum commit is not AZ-aware!

34

primary

node2

node3

node4

node5

synchronous_standby_names = 'ANY 3 (node1, node2, node3, node4, node5)

sync

async

node1

 AZ 1 AZ 2

AZ 3

Bonus: what to do on failover

● synchronous_standby_names = 'N (node1, …, nodeN)'

○ Pick any node. However, better to choose the most

up-to-date

● synchronous_standby_names = 'N (node1, …, nodeM)'

○ Need to get responses from M-N+1 nodes to find the

synchronous

35

Bonus: quorum-based failover (example)

36

primary

node1

node2

node3

node4

synchronous_standby_names = 'ANY 2 (node1, node2, node3, node4)

sync

async

We need to see at least 3
nodes to find at least 1
synchronous among them!

Questions?

37

