
Sergey Dudoladov
Zalando SE

Lifetime of a SELECT
A blick into the depth of PostgreSQL internals

Who am I ?
A Senior Database Engineer in Zalando

Earlier more infra, now more consultancy

Volunteer in the PostgreSQL community

Zalando SE
● In-house PostgreSQL as a Service

● > 3000 PostgreSQL clusters

● Popular open source projects:

○ Postgres-operator

○ Spilo

https://github.com/zalando-incubator/postgres-operator
https://github.com/zalando/spilo

Who are you ?

Developers with some PostgreSQL experience
who want to understand what happens under
the hood

Why this talk ?

Money saved on avoidable incidents is nice

Repetitive questions are not

PostgreSQL internals are fun

Philosophy

A problem is more important than a solution

More why than how

KISS

All models are wrong, but some
are useful.

George E. P. Box, a British statistician

The plan
How PostgreSQL runs

How PostgreSQL runs SELECTs

How PostgreSQL runs SELECTs fast

SELECT 1 as hello_pg_conf_de;

How PostgreSQL runs

SELECT 1;

No DB is 100% available

Why you will forget

Infrastructure is rapidly maturing

PostgreSQL is very reliable

“Hay in a haystack”

Process model

SELECT 1;

Postgres Server
Process

Backend process

Connections
come with a cost

Typical issues

Hitting max_connections

Connection not terminated

Opening and closing many short-lived
connections. Fine if load is low.

TODOs
Monitor!

Connection pooler is your

Teach yourself to cancel backends gracefully. Hint:
pg_(cancel|terminate)_backend()

Have a way to nicely restart an application and a
connection pool

The Lifetime

Parse Analyze Rewrite Plan Execute

How PostgreSQL runs

EXPLAIN ANALYZE SELECT 1 AS hello_pg_conf_de;
 QUERY PLAN
════════════════════════════
 Result (cost=0.00..0.01 rows=1 width=4) (actual
time=0.002..0.003 rows=1.00 loops=1)
 Planning Time: 0.027 ms
 Execution Time: 0.018 ms
(3 rows)

Mental model v1.0

SELECT 1;

Postgres Server
Process

Backend process

The plan
How PostgreSQL runs

How PostgreSQL runs SELECTs

How PostgreSQL runs SELECTs fast

SELECT * FROM t;

… If you've chosen the right data structures and
organized things well, the algorithms will almost
always be self-evident …

Rob Pike’s
5 Rules of Programming

User’s table
CREATE TABLE t (
 id SERIAL PRIMARY KEY,
 payload TEXT
);

INSERT INTO t (payload)
SELECT gen_random_uuid()::TEXT
FROM generate_series(1, 10000000);

* You need pgcrypto for gen_random_uuid()
** Do you see the problem here ?

System’s page

Header

2, 133b4937-9211-... 1, 133b4937-9211-...

The buffer pool

Filesystem cache and disk

PostgreSQL

Typical issues

Buffer manager is PostgreSQL.

Filesystem cache is important.

Be careful with load tests.

Typical issues

Use EXPLAIN (ANALYZE, BUFFERS)

Nikolay Samokhvalov, EXPLAIN (ANALYZE) needs BUFFERS
https://tinyurl.com/ywyhpz73

Typical issues

 EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM t;
 QUERY PLAN
══════════════════════════════════════
 Seq Scan on t (cost=0.00..193460.13 rows=10000113 width=41)
(actual time=0.076..1384.638 rows=10000010.00 loops=1)
 Buffers: shared hit=12659 read=80800
 Planning Time: 3.210 ms
 Execution Time: 1711.777 ms
(4 rows)

Mental model v1.5
Postgres Server

Process

Backend process Buffer manager

SELECT * FROM t ORDER BY payload;

Sort and Seq Scan ?

EXPLAIN SELECT * FROM t ORDER BY payload;
 QUERY PLAN
══════════════════════════════════════
══════════════════════════════
 Sort (cost=1971392.92..1996393.20 rows=10000113
width=41)
 Sort Key: payload
 -> Seq Scan on t (cost=0.00..193460.13 rows=10000113
width=41)

Iterator model

As in Java Iterator<E>:
1. next()
2. hasNext()

Seq Scan

Sort

next() tuples

Goetz Graefe,
Volcano - an Extensible and Parallel Query Evaluation System

https://tinyurl.com/4zaxyjzy

work_mem

Sort

Mind the memory !

Reads generate writes
EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM t ORDER BY payload;
QUERY PLAN
══════════════════════════════════════
 Sort (cost=1971392.92..1996393.20 rows=10000113 width=41) (actual
time=34302.764..44241.243 rows=10000010.00 loops=1)
 Sort Key: payload
 Sort Method: external merge Disk: 499152kB
 Buffers: shared hit=12691 read=80768, temp read=124778 written=124996
 -> Seq Scan on t (cost=0.00..193460.13 rows=10000113 width=41) (actual
time=0.145..3214.634 rows=10000010.00 loop>
 Buffers: shared hit=12691 read=80768
 Planning Time: 2.388 ms
 Execution Time: 44699.701 ms

Reads generate writes
SET work_mem = '1000MB';
EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM t ORDER BY payload;
QUERY PLAN
══════════════════════════════════════
 Sort (cost=1356148.92..1381149.20 rows=10000113 width=41) (actual
time=46419.621..49033.799 rows=10000010.00 loops=1)
 Sort Key: payload
 Sort Method: quicksort Memory: 904274kB
 Buffers: shared hit=12755 read=80704
 -> Seq Scan on t (cost=0.00..193460.13 rows=10000113 width=41) (actual
time=0.033..1302.849 rows=10000010.00 loop>
 Buffers: shared hit=12755 read=80704
 Planning Time: 4.058 ms
 Execution Time: 49732.897 ms

Mental model v2.0
Postgres Server

Process

Backend process Buffer manager

The plan
How PostgreSQL runs

How PostgreSQL runs SELECTs

How PostgreSQL runs SELECTs fast

SELECT * FROM t
WHERE payload = ‘…’ ;

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM t WHERE payload =
'db5c138e-5f56-402b-88d3-fae4d42a7c43';
QUERY PLAN
═══
 Gather (cost=1000.00..146543.02 rows=1 width=41) (actual time=0.496..350.039
rows=1.00 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 Buffers: shared hit=13011 read=80448
 -> Parallel Seq Scan on t (cost=0.00..145542.92 rows=1 width=41) (actual
time=226.272..341.485 rows=0.33 loops=3)
 Filter: (payload = 'db5c138e-5f56-402b-88d3-fae4d42a7c43'::text)
 Rows Removed by Filter: 3333336
 Buffers: shared hit=13011 read=80448
 Planning Time: 0.089 ms
 Execution Time: 350.074 ms

What a waste …

How to locate

Aside: B-trees
Fundamental: 99% of all indexes

PostgresPro, Indexes in PostgreSQL, part 4
(B-Tree)
https://tinyurl.com/y9bbjwxm

CREATE INDEX CONCURRENTLY ON t(payload);
CREATE INDEX
Time: 66830.423 ms (01:06.830)

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM t WHERE payload =
'db5c138e-5f56-402b-88d3-fae4d42a7c43';
QUERY PLAN
══
 Index Scan using t_payload_idx on t (cost=0.56..8.58 rows=1 width=41)
(actual time=0.617..0.619 rows=1.00 loops=1)
 Index Cond: (payload = 'db5c138e-5f56-402b-88d3-fae4d42a7c43'::text)
 Buffers: shared hit=3 read=2
 Planning:
 Buffers: shared hit=10 read=3 dirtied=1
 Planning Time: 4.571 ms
 Execution Time: 1.386 ms

How to locate

One access method costs more than the other

Index Scan: 5 ms, Seq Scan: 350 ms

Observation: it’s relative

How to choose

 Cost = IO cost + CPU cost

 IO = f(number of pages)

CPU = f(number of tuples)

The cost

The statistics
 # of pages, # of tuples, most common values etc.

Normally collected automatically

Outdated, absent or otherwise wrong statistics

Query optimization on a different dataset

Query plan flips (tip: learn auto_explain)

Typical issues

 The very first step in query optimization

Before v18: the very first step after major version upgrade

Almighty ANALYZE

ANALYZE t;
ANALYZE
Time: 699.738 ms

The planner

Index
Scan

Statistics Access methods / joins Plan / iterator tree

Mental model v3.0
Postgres Server

Process

Backend process Buffer manager

Query planner

Statistics

What’s next ?

+ Implement == understand
- Minimum 150 hours

But I want my elephants …

https://postgrespro.com/community/
books/internalshttps://www.interdb.jp/pg/index.html

… and fun

Bonus
SELECT payload FROM t WHERE id = 1;
 payload
═══════════════════════════════
 133b4937-9211-4add-9839-749955xfa2da
(1 row)

Bonus
SELECT payload::uuid FROM t WHERE id = 1;

ERROR: 22P02: invalid input syntax for type uuid:
"133b4937-9211-4add-9839-749955xfa2da"
LOCATION: string_to_uuid, uuid.c:170
Time: 0.559 ms

Bonus
CREATE TABLE t (
 id SERIAL PRIMARY KEY,
 payload TEXT
);

INSERT INTO t (payload)
SELECT gen_random_uuid()::TEXT
FROM generate_series(1, 10000000);

Not everything is TEXT

UTFT

Use
The
F*bulous
Typesystem

QuestThank You!

