iel Gustafsson - Pivotal

Dan

Hello, I'm Daniel Gustafsson

IVOLQ

I work at © with® an

e
R e

T
AT

Hello, I'm Daniel Gustafsson
 daniel@yesql.se ¢ @d_gustafsson

| | & Contributor
PGCont.EU, Nordic PGDay, FOSDEM PGDay
{Stockholm | Oslo} PostgreSQL Usergroup

Gcogle unboxing

All Images Videos News

About 102 000 000 results (0,50 seconds)

MOV
- I i .

SR [
e) P
Ry

- -

L

—P

Dostaresos

.. Y e it D G I IR SN

1 -

o . g T G PG

B

-~ -y -~

AT T g . e —

> : :
e - W R .

S\\ stackoverflow Questions Developer Jobs Tags Users Search...

Joins are for lazy people?

4, |recently had a discussion with another developer who claimed to me that JOINs (SQL) are
useless. This is technically true but he added that using joins is less efficient than making several

164 requests and link tables in the code (C# or Java).

\ 4 For him joins are for lazy people that don't care about performance. Is this true? Should we avoid
using joins?

26 c# java sql join

share improve this question

http://10.kym—cdn.com/photos/images/original/001/044/247/297.png

m!:) W 0.kl \(:
jer o rLACT, ¢
maseryr Kty
4° by svr s pl
6 wuems Aot d
F:"‘,\, N GAYW T A
1ty
[
me
l*.8* T\ “0 W)
O | e o LA }"h:‘
e C sl Qles.c €IS

. |

‘N 'V-‘.‘. .(.\...i'oo,.o

Introduce a really elegant,
yet sort of taken-for-granted,
part of the query planner and

trace its origins

CREATE TABLE t (
a 1lnteger,
b 1nteger

) ;

CREATE TABLE tt (
c 1integer,
d 1nteger

) ;

INSERT INTO t VALUES (1, 2);
INSERT INTO tt VALUES (2, 2);

SELECT t.a, tt.c FROM t, tt
WHERE t.b = tt.d;

SELECT t.a, tt.c FROM t, tt
WHERE t.b = tt.d;

SELECT t.a, tt.c FROM t, tt
WHERE t.b = tt.d;

SELECT
n_name,
sum(1_extendedprice x (1 - 1 _discount)) as revenue
FROM
customer,
orders,
lineitem,
supplier,
nation,
region
WHERE
c_custkey = o_custkey
AND 1l _orderkey = o_orderkey
AND 1l _suppkey = s_suppkey
AND c_nationkey = s_nationkey
AND s _nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = 'ASIA'
AND o _orderdate >= date '1994-01-01'
AND o_orderdate < date '1994-01-01' + interval 'l' year
GROUP BY
EINE
ORDER BY
revenue desc;

Well defined

Well defined

Pretty well
defined

Well defined

b T

Pre’r’ry well
defined

Well defined

..rather
complicated

Pretty well
defined

238 MAGIC TRICK

--.
- a .

*DOSITIVELY ASTONISHING”...

— ,__,,..w BT

NOTHING EXTRA T0 BUY! |

EVERY SINGLE TRICK IS PERFORMED WITH EVERYDAY THINGS
HAVE AROUND THE HOUSE...COINS, CARDS, BALLS, HANDKERCHIEFS, mpss e‘ft‘: TV A

SAY PEOPLE WHO HAVE SEEN THIS COLLECTION. YOU'LL BE PLUCKING COINS FROM

THIN AIR ! YOU'LL CALUSE CARDS TO CHANGE THEIR SPOTS AT YOUR COMMAND ! Yol LL
HEAR THE GASPS OF WONDER AS YOU DO THE WORLDP-FAMOUS "INDIAN ROPE TRICK.”.
YOU'LL ACTUALLY DO OVER 238 BAFFLING TRICKS, INCLUDING

o THE VANISHING BALL DISAPPEARING NANDKERCHIEF i~ = = e == o o n
o THE MIND READING TRICK + THE KNOT THAT UNTIES ITSEL WY MAGIC TRICKS
o THE SECRET of NUMBER @ » THE DISAPPEARING CO/N - Po BOX 397- ROCKVILLE CENTRE,
* PHANTOM WRITING © MAKING A BALL ROLL BY ITSELF

o BROWING MONEY TRICK *MIRACLE CARD JUMPING TRICK | RUSH ME MY MABIC TR/CKS FOR
o TF COIN LEAPING TRICK o THE PHANTOM MONEY TRICK O, | WHICH I HAVE ENCLOSED 80O¢.

ANYONE... 6 TO 60...CAN [15me2tron fumichec fow)

PERFORM THESE FEATS OF MAGIC.. | (rieise rarr eonsion seicw)
ONCE YOU KNOW THEIR SECRETS 1 |Xare

COMPLETE SELRETS REVEALED! |A<“ms

Ferianss Tecasynaamer ol smsosor (Sl S
MAGICIANS AS HOUDINI, THURSTON, et . AND NOW... YOULI (AVDIAN & FOREKGH 70¢ EACH INTL MONEY 0%

ama'e 4 D D CHEL ehas D 45 NS END D CEY CED €
CAN 00 ALL OF THESE ch TRICKS . -[c’gesy/sﬁwm?mkr com/photos/18946008@N06/2767120040/

Query Planning

Preprocessing Simplification, constant folding

Scan/Join Planning WHERE clause

Special Features GROUP BY, window functions ..

Postprocessing Convert plan to execution

Query Planning

Preprocessing Simplification, constant folding

Special Features GROUP BY, window functions ..

Postprocessing Convert plan to execution

Join Order
Selection

Join Order
Enumeration

Join Tree
Construction

Given the set of relations and

join clauses in a query, find

the optimal order in which to

access the relations in order
to satisfy the query

Join Trees

Left Sided

Bushy

((((AB)C)D)E) ((AB) (CD))

Join Trees

Right Sided

Bushy

(E(D(C(BA)))) ((AB) (CD))

AXBMXCNXD

N! join orderings:

ABCD, ABDC, ADBC, DABC ...

AXBMXCNXD

N! join orderings:

ABCD, ABDC, ADBC, DABC ...

f_J%

(N-1)! plans per join order:

(((AB)C)D), ((AB)(CD))

N! x (N-1)! possible plans

4 way join—> 144 plans

10 way join—>1,316,818,944,000 plans

20 way ..

Naive, and/or,
exhaustive
approaches

doesn't scale

Siraiegies

Dynamic programming

((((AB)C)D)E) Bottom Up

Siraiegies

Top Down

Branch Pruning

Rule based

Tree transformation

Memoization

((((AB)C)D)E)

ENDLICH ANGEKOMMEN
ATARI PERSONAL COMPUTER SYSTEM

ATARI 400 (16 K) und ATARI 800 (bis 48K) sind Ford
das Herz des kompletten Personal Computer
Systems. Color-PAL-Signal fur jeden Fernseher
6502
160 Farbe
PASCAI
TOR ROM-Programm-Module.

or, Programm-Re

Pen, Joysticks Ut

ARI-Zubehor
TARI-Soft-

Computers for people

Machen Sie Ihr Hobby zum Beruf.

e Bbe

Schreiben Sie
Herrn Olimann

System/R

Selinger, P. G.; Astrahan, M. M.; Chamberlin, D.
D.; Lorie, R. A.; Price, T. G. (1979), "Access Path
Selection in a Relational Database Management
System", Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data,

PP. 25—34

Selinger Algoritm

Selinger Algoritm

Step 1 » Enumerate all access paths to individual relations,
keep the cheapest around

Selinger Algoritm

Step 1 » Enumerate all access paths to individual relations,
keep the cheapest around

Step 2 ¢ Consider all ways to join two relations, using best
access path as computed in step one

Selinger Algoritm

Step 1 » Enumerate all access paths to individual relations,
keep the cheapest around

Step 2 ¢ Consider all ways to join two relations, using best
access path as computed in step one

Step 3 ¢ Consider all ways to join 3 relations, reusing cached
calculations from step 2

Selinger Algoritm

Step 1 » Enumerate all access paths to individual relations,
keep the cheapest around

Step 2 ¢ Consider all ways to join two relations, using best
access path as computed in step one

Step 3 ¢ Consider all ways to join 3 relations, reusing cached
calculations from step 2

Step n ¢ Consider all ways to join n relations, reusing cachead
calculations from step n-1

Selinger Algoritm

Step 1 » Epumerate all access paths to individual relations,
keep the/cheapestjaround

Step 2 ¢ Consider all ways to join two relations, using best
access path as computed in step one

Step 3 ¢ Consider all ways to join 3 relations, reusing cached
calculations from step 2

Step n ¢ Consider all ways to join n relations, reusing cachead
calculations from step n-1

Selinger Algoritm

Step 1 » Epumerate all access paths to individual relations,
keep the/cheapestjaround

Step 2 ¢ Consider all ways to join two relations, using best
access path as computed in step one

Step 3 ¢ Consider all ways to join 3 relations, reusing cached
calculations from step 2

Step n ¢ Consider all ways to join n relations, reusing cached
calculations from step n-1

o >

Step 1 - Access Paths

OptimalAccess (Aretation) ;
Opt 1ma LAccess (Brelation) ’

Step 2 - 2-way Join

{A,B}
{B,C}

Cheapest(AB,BA);
Cheapest(BC,CB);

Step 3 - 3-way Join

{A,B,C} = Cheapest(A{B,C}, {B,C}A,
B{A,C}, {A,C}B,
C{A,B}, {A,B}C);

{A,B,D} = Cheapest(A{B,D}, {B,D}A,
B{A,D}, {A,D}B,
D{A,B}, {A,B}D);

Step 3 - 3-way Join

{A,B,C} = Cheapest(A{B,C}, 1B,C}A,
B{A,C}, {A,C}B,

{A,B,D} = Cheapest(A{B,D}, {B,D}A,
B{A,D}, {A,D}B,
DiA,B), 1A,B}D);

Step n - n-way Join

{A,B,C,D} = ...

Step n - n-way Join
{A,B,C,D} = ...

Cheapest join order for query reached

Selinger Extensions

Step 1 - Enumerate all access paths to individual relations,
keep the cheapest around ‘l'

Step 1 - Enumerate all access paths to individual relations,
keep the cheapest for all interesting orderings around

!

Cheapest join order with the
correct ordering iff cheaper than
cheapest overall + final sort-step

©._TomasYermdra

T a—

. -

GEQO - Genetic Query
Optimizer

----------- geqo_threshold ==smsesmscscacacaa

Selinger Algorithm

GEQO - Genetic Query
Optimizer

----------- geqo_threshold) ======mecaca=-

Selinger Algorithm

cliele

Heuristics required as the
search space increase

Travelling salesman algori’rhm
across the relations

..not terribly good, but better
than waiting till the heat death
of the universe

PostgreSQL °* Selinger

Keep interesting sort orders around

Use existing join clauses when
possible, only attempt cartesian-
product join when no clause

Bushy trees {AB}{CD}

PostgreSQL °* Selinger

SELECT

FROM tabl, tab2, tab3, tab4

WHERE tabl.col = tab2. col AND
tabl.col tab3.col AND
tabl.col tab4.col

{1 2},{1 3},{1 4}
{1 2 3,11 3 4},{1 2 4}
{1 2 3 4}

-) v
I R O

DB I e . .
2 . % ~
"g'r_,«(
i i

o ~rapanais
& —

RelOptInfo *

standard_join_search(PlannerInfo *root, int levels_needed, List xinitial_rels) 'L f
o RelOptInfo *

lev;
RelOptInfo *rel;

. standard_join_search(

* This function cannot be invoked recursively within any one planning

I/problem, so join_rel_levell] can't be in use already. P -l.a n ne rI n fo * rOOt ’

Assert(root—>join_rel_level == NULL); = t 'L 'L d d

N in evels needed,

* We employ a simple '"dynamic programming" algorithm: we first find all 0 0 - 0

* ways to build joins of two jointree items, then all ways to build joins Llst *ln lt la -L re-LS .
* of three items (from two-item joins and single items), then four-—item — ’
* joins, and so on until we have considered all ways to join all the

* items into one rel.

*

* root—>join_rel_level[j] is a list of all the j-item rels. Initially we

* set root—>join_rel_level[l] to represent all the single-jointree-item

* relations.

*/
root—->join_rel_level = (List *x*) palloc@((levels_needed + 1) * sizeof(List x*));

root—>join_rel_level[l] = initial_rels;
for (lev = 2; lev <= levels_needed; lev++)
ListCell 221lE@ s

/%

* Determine all possible pairs of relations to be joined at this
* level, and build paths for making each one from every available
* pair of lower-level relations.

*/

join_search_one_level(root, lev);

/
Run generate_gather_paths() for each just-processed joinrel. We
could not do this earlier because both regular and partial paths
can get added to a particular joinrel at multiple times within
join_search_one_level. After that, we're done creating paths for
* the joinrel, so run set_cheapest().

*/

foreach(lc, root->join_rel_level[lev])

* X ¥ X ¥

rel = (RelOptInfo x) 1first(lc);

/* Create GatherPaths for any useful partial paths for rel x/
generate_gather_paths(root, rel);

/* Find and save the cheapest paths for this rel x/
set_cheapest(rel);

#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);

#endif
b
)
VES
* We should have a single rel at the final level.
*/
if (root->join_rel_level[levels_needed] == NIL)
elog(ERROR, "failed to build any %d-way joins", levels_needed);
Assert(list_length(root—>join_rel_level[levels_needed]) == 1);

rel = (RelOptInfo *) linitial(root->join_rel_levell[levels_needed]);
root—>join_rel_Tlevel = NULL;

return rel;

for (lev = 2; lev <= levels_needed; lev++)

N
X%

* We employ a simple "dynamic programming" algorithm: we
* first find all ways to build joins of two jointree

* 1tems, then all ways to build joins of three items

* (from two-item joins and single items), then four-item
* joins, and so on until we have considered all ways to
* join all the 1items into one rel.

*/

for (lev = 2; lev <= levels needed; lev++)

VES

* Determine all possible pairs of relations to be joined at this
* level, and build paths for making each one from every available
*x pair of lower-level relations.

*/

join_search_one_level(root, lev);

VES

* Determine all possible pairs of relations to be joined at this
* level, and build paths for making each one from every available
* palr of lower—-level relations.

*/

join_search_one_level(root, lev);

/* Find and save the cheapest paths for this rel x/
set_cheapest(rel);

/* Find and save the cheapest paths for this rel x/
set_cheapest(rel);

void
join_search_one_level(PlannerInfo *xroot, int level)

Ld
List *kjoinrels = root->join_rel_level; V01

ListCell xr;
int k;

e join_search_one_level(PlannerInfo xroot,
{'zoifijg(i)iigﬁgifésﬁl:({e\t/gif new joinrels are added to proper list *x/ in t -Leve -L)

foreach(r, joinrels[level - 1])
RelOptInfo *old_rel = (RelOptInfo x) Llfirst(r);

if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
has_join_restriction(root, old_rel))

{
ListCell xother_rels;
if (level == 2) /* consider remaining initial rels */
other_rels = lnext(r);
else /* consider all initial rels */
other_rels = list_head(joinrels[1]);
make_rels_by_clause_joins(root,
old_rel,
other_rels);
}
else
{
make_rels_by_clauseless_joins(root,
old_rel,
list_head(joinrels[1]));
}

b
for (k = 2;; k++)
{
int other_level = level - k;

if (k > other_level)
break;

foreach(r, joinrels[k])
RelOptInfo *old_rel = (RelOptInfo %) Ufirst(r);

ListCell xother_rels;
ListCell *r2;

if (old_rel->joininfo == NIL && 'old_rel->has_eclass_joins &&
'has_join_restriction(root, old_rel))
continue;

if (k == other_level)
other_rels = lnext(r); /* only consider remaining rels x/
else
other_rels = list_head(joinrels[other_levell);
for_each_cell(r2, other_rels)
RelOptInfo *new_rel = (RelOptInfo %) lfirst(r2);
if (!'bms_overlap(old_rel->relids, new_rel->relids))
if (have_relevant_joinclause(root, old_rel, new_rel) ||
have_join_order_restriction(root, old_rel, new_rel))
{

I

(void) make_join_rel(root, old_rel, new_rel);

}
+
if (joinrels[level] == NIL)
{
foreach(r, joinrels[level - 11)
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);

make_rels_by_clauseless_joins(root,
old_rel,

list_head(joinrels[1]));
}

if (joinrels[level] == NIL &&
root—>join_info_list == NIL &&
'root—>hasLateralRTEs)
elog(ERROR, "failed to build any %d-way joins", level);

*

join_search_one_level

Consider ways to produce join relations contailning
exactly 'level' jointree items. (This is one step of
the dynamic—-programming method embodied 1in
standard_join_search.) Join rel nodes for each
feasible combination of lower-level rels are created
and returned 1in a list. Implementation paths are
created for each such joinrel, too.

level: level of rels we want to make this time
root—>join_rel _levell[j], 1 <= j < level, is a list of
rels containing j items

¥ ¥ K ¥ KK XX XX XX X%

The result is returned in root->join_rel_level|[level].
/

*

N
X

First, consider left-sided and right-sided plans,

in which rels of exactly level-1 member relations
are joilned against initial relations. We prefer to
join using join clauses, but 1f we find a rel of
level-1 members that has no join clauses, we will
generate Cartesian-product joins against all 1initial
rels not already contained in 1it.

¥ ¥ K ¥ ¥ ¥ ¥

*/
foreach(r, joinrels[level - 11])

First, consider left-sided and right-sided plans,

in which rels of exactly level-1 member relations
are joilned against initial relations. We prefer to
join using join clauses, but 1f we find a rel of
level-1 members that has no join clauses, we will
generate Cartesian-product joins against all 1initial
rels not already contained in 1it.

¥ ¥ K ¥ ¥ ¥ ¥

*/
foreach(r, joinrels[level - 11])

A{B,C}, {B,C}A, B{A,C}, {A,C}B ..

=
—
=~

N
X

Now, consider '"bushy plans"™ in which relations of Kk
initial rels are joined to relations of level-k
initial rels, for 2 <= k <= level-2.

We only consider bushy-plan joins for pairs of rels
where there is a suitable join clause (or join order
restriction), in order to avoid unreasonable growth
of planning time.

¥ ¥ ¥ ¥ ¥ X ¥ ¥

%/
for (k = 2::; k++)

1A,B}B,Cr, 1A,C}B,C}

/%

* Now, consider "bushy plans"” in which relations of Kk

* 1nitial rels are joined to relations of level-k

* 1nitial rels, for 2 <= k <= level-2.

S

* We only consider bushy-plan joins for pairs of rels

* where there is a suitable join clause (or join order
* restriction), in order to avoid unreasonable growth

* of planning time.

%/
for (k = 2::; k++)

VES
* Since make_join_rel(x, y) handles both x,y and y,x
* cases, we only need to go as far as the halfway point.
*/
if (k > other_level)
break;

break_;

https://www.flickr.com/photos/beigephotos/2283119524

At LW YWETEIV ST SO e ol 2l W e ST lilla ii® s M b f -

F N\

Mﬂickr.com/photos/athou\sandthings/3055456

How Good Are Query Optimizers, Really?

Viktor Leis
TUM

leis@in.tum.de

Peter Boncz
CWI

p.boncz@cwi.nl

ABSTRACT

Finding a good join order is crucial for query performance. In this
paper, we introduce the Join Order Benchmark (JOB) and exper-
imentally revisit the main components in the classic query opti-
mizer architecture using a complex, real-world data set and realistic
multi-join queries. We investigate the quality of industrial-strength
cardinality estimators and find that all estimators routinely produce
large errors. We further show that while estimates are essential for
finding a good join order, query performance is unsatisfactory if
the query engine relies too heavily on these estimates. Using an-
other set of experiments that measure the impact of the cost model,
we find that it has much less influence on query performance than
the cardinality estimates. Finally, we investigate plan enumera-
tion techniques comparing exhaustive dynamic programming with
heuristic algorithms and find that exhaustive enumeration improves
performance despite the sub-optimal cardinality estimates.

Andrey Gubichev

TUM

gubichev@in.tum.de
Alfons Kemper

TUM

kemper@in.tum.de

Atanas Mirchev
TUM

mirchev@in.tum.de

Thomas Neumann
TUM

neumann@in.tum.de

HJ
X
cardinality cost Nﬁm N
SELECT ... estimation model PN T
FROM R,S,T 78
WHERE ... lan space R
enumeration

Figure 1: Traditional query optimizer architecture

e How important is an accurate cost model for the overall query
optimization process?

e How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows

In this paper we have provided quantitative
evidence for conventional wisdom that has
been accumulated in three decades of practical
experience with query optimizers. We have
shown that query optimization 1s essential for

etticient query processing and that exhaustive
enumeration algorithms find better plans
than heutristics.

Contributions

Challenging conventional wisdom is
unglamorous but important research

Introduce a Join Order Benchmark
using non-synthetic data (IMDB
dataset)

A New, Highly Efficient, and Easy To Implement
Top-Down Join Enumeration Algorithm

Pit Fender #!, Guido Moerkotte #2

Database Research Group, University of Mannheim
68131 Mannheim, Germany
lfender@informatik.uni-mannheim.de
Smoerkotte@informatik.uni-mannheim.de

Abstract—Finding an optimal execution order of join opera-
tions is a crucial task in every cost-based query optimizer. Since
there are many possible join trees for a given query, the overhead
of the join (tree) enumeration algorithm per valid join tree should
be minimal. In the case of a clique-shaped query graph, the best
known top-down algorithm has a complexity of ©(n?) per join
tree, where n is the number of relations. In this paper, we present
an algorithm that has an according O(1) complexity in this case.

We show experimentally that this more theoretical result has
indeed a high impact on the performance in other non-clique
settings. This is especially true for cyclic query graphs. Further,
we evaluate the performance of our new algorithm and compare
it with the best top-down and bottom-up algorithms described
in the literature.

I. INTRODUCTION

For a DBMS that provides support for a declarative query
IF\Y‘\IT11f\[TC\ I;]TC\ Qn'

.
fl"\[_\ anerv onfimi7zer 1< 9 f‘1‘11f‘1n] NDlecea f\'F

Furthermore, since we exclude cross products, S| and S> must
induce connected subgraphs of our query graph, and there
must be two relations R, € S; and Ry € S5 such that they are
connected by an edge, i.e., there must exist a join predicate
involving attributes in R, and Rs. Let us call such a partition
(51,52) a csg-cmp-pair (or ccp for short). Denote by T; the
best plan for S;. Then the query optimizer has to consider the
plans T7 X T for all csg-cmp-pairs (51, .52).

One possibility to generate all csg-cmp-pairs for a set S
of relations is to consider all subsets S; C S, define Sy =
S\ S1, and then check the above conditions. Let us call such
a procedure naive generate and test or ngt for short.

Table I gives for n = 5,10,15,20 relations the number
of connected subgraphs (#csg), the number of csg-cmp-pairs
(#ccp), and the number of generated subsets S; for the

natve oenarate and teact alonrithm (Hnotl Thece nititmhbhere wwere

We show experimentally that this more
theoretical result has indeed a high impact on

the performance in other non-clique settings.

Contributions

O(1) only for cliques

Cross-products not handled

Focus on implementation is refreshing

Dynamic Programming Strikes Back

Guido Moerkotte
University of Mannheim
Mannheim, Germany

moerkotte@informatik.uni-mannheim.de

ABSTRACT

Two highly efficient algorithms are known for optimally or-
dering joins while avoiding cross products: DPccp, which is
based on dynamic programming, and Top-Down Partition
Search, based on memoization. Both have two severe limi-
tations: They handle only (1) simple (binary) join predicates
and (2) inner joins. However, real queries may contain com-
plex join predicates, involving more than two relations, and
outer joins as well as other non-inner joins.

Taking the most efficient known join-ordering algorithm,
DPccp, as a starting point, we first develop a new algorithm,
DPhyp, which is capable to handle complex join predicates
efficiently. We do so by modeling the query graph as a (vari-
ant of a) hypergraph and then reason about its connected
subgraphs. Then, we present a technique to exploit this ca-
pability to efficiently handle the widest class of non-inner
joins dealt with so far. Our experimental results show that
this reformulation of non-inner joins as complex predicates

1] C *4]

Thomas Neumann
Max-Planck Institute for Informatics
Saarbricken, Germany

neumann@mpi-inf.mpg.de

a dynamic programming algorithm to find the optimal join
order for a given conjunctive query [21]. More precisely, they
proposed to generate plans in the order of increasing size.
Although they restricted the search space to left-deep trees,
the general idea of their algorithm can be extended to the
algorithm DPsize, which explores the space of bushy trees
(see Fig. 1). The algorithm still forms the core of state-
of-the-art commercial query optimizers like the one of DB2
[12].

Recently, we gave a thorough complexity analysis of DP-
size [17]. We proved that DPsize has a runtime complexity
which is much worse than the lower bound. This is mainly
due to the tests (marked by '*’ in Fig. 1), which fail far
more often than they succeed. Furthermore, we proposed
the algorithm DPccp, which exactly meets the lower bound.
Experiments showed that DPccp is highly superior to DPsize.
The core of their algorithm generates connected subgraphs
in a bottom-up fashion.

The main competitor for dynamic programming is mem-

Contributions

Handles all types of joins
Hypergraph approach

Important building block

Shows promise (I think..)

ps: //www. flickr.com/photos/chris77621/8080453815

Summary

The Selinger Algorithm has stood the test
of time and serve us really well

Work is probably needed to keep up with
increased complexity and BI@ DATA

The PostgreSQL codebase is of
unrivalled quality

daniel@yesqgl.se * @d_gustatsson

