
Data Modeling, Normalization
and Denormalisation

Dimitri Fontaine
Citus Data

P G C O N F . E U 2 0 1 8 , L I S B O N | O C T O B E R 2 4 , 2 0 1 8

http://PgConf.eu

PostgreSQL

P O S T G R E S Q L M A J O R C O N T R I B U T O R

Citus Data

C U R R E N T L Y W O R K I N G A T

Mastering
PostgreSQL
In Application
Development

https://masteringpostgresql.com

Mastering
PostgreSQL
In Application
Development

-15%
“pgconfeu2018”

https://masteringpostgresql.com

pgloader.io

http://pgloader.io

Rule 5. Data dominates.

R O B P I K E , N O T E S O N P R O G R A M M I N G I N C

“If you’ve chosen the right data structures and

organized things well, the algorithms will

almost always be self-evident. Data structures,

not algorithms, are central to programming.”

(Brooks p. 102)

Avoiding Database
Anomalies

Update Anomaly

Insertion Anomaly

Deletion anomaly

Database Design and User
Workflow

A N O T H E R Q U O T E F R O M F R E D B R O O K S

“Show me your flowcharts and conceal your

tables, and I shall continue to be mystified.

Show me your tables, and I won’t usually need

your flowcharts; they’ll be obvious.”

Tooling for Database
Modeling

BEGIN;

create schema if not exists sandbox;

create table sandbox.category
 (
 id serial primary key,
 name text not null
);

insert into sandbox.category(name)
 values ('sport'),('news'),('box office'),('music');

ROLLBACK;

Object Relational Mapping

• The R in ORM
stands for
relation

• Every SQL query
result set is a
relation

Object Relational Mapping

• User Workflow

• Consistent view of the whole world at all
time

When mapping base tables, you end up
trying to solve different complex issues at
the same time

Normalization

Basics of the Unix
Philosophy: principles

Clarity

• Clarity is better
than cleverness

Simplicity

• Design for
simplicity; add
complexity only
where you must.

Transparency

• Design for visibility
to make inspection
and debugging
easier.

Robustness

• Robustness is the
child of transparency
and simplicity.

1st Normal Form, Codd,
1970

• There are no duplicated rows in the table.

• Each cell is single-valued (no repeating
groups or arrays).

• Entries in a column (field) are of the same
kind.

2nd Normal Form, Codd,
1971

“A table is in 2NF if it is in 1NF and if all non-

key attributes are dependent on all of the key.

A partial dependency occurs when a non-key

attribute is dependent on only a part of the

composite key.”

“A table is in 2NF if it is in 1NF and

if it has no partial dependencies.”

Third Normal Form, Codd, 1971
BCNF, Boyce-Codd, 1974

• A table is in 3NF if
it is in 2NF and if it
has no transitive
dependencies.

• A table is in BCNF
if it is in 3NF and if
every determinant
is a candidate key.

More Normal Forms

• Each level builds on the previous one.

• A table is in 4NF if it is in BCNF and if it has no multi-
valued dependencies.

• A table is in 5NF, also called “Projection-join Normal
Form” (PJNF), if it is in 4NF and if every join dependency
in the table is a consequence of the candidate keys of the
table.

• A table is in DKNF if every constraint on the table is a
logical consequence of the definition of keys and domains.

Database Constraints

Primary Keys

create table sandbox.article
 (
 id bigserial primary key,
 category integer references sandbox.category(id),
 pubdate timestamptz,
 title text not null,
 content text
);

Surrogate Keys

Artificially generated key is named a

surrogate key because it is a

substitute for natural key.

A natural key would allow preventing

duplicate entries in our data set.

Surrogate Keys

insert into sandbox.article
 (category, pubdate, title)
 values (2, now(), 'Hot from the Press'),
 (2, now(), 'Hot from the Press')
 returning *;

Oops. Not a Primary Key.

-[RECORD 1]---------------------------
id | 3
category | 2
pubdate | 2018-03-12 15:15:02.384105+01
title | Hot from the Press
content |
-[RECORD 2]---------------------------
id | 4
category | 2
pubdate | 2018-03-12 15:15:02.384105+01
title | Hot from the Press
content |

INSERT 0 2

Natural Primary Key

create table sandboxpk.article
 (
 category integer references sandbox.category(id),
 pubdate timestamptz,
 title text not null,
 content text,

 primary key(category, pubdate, title)
);

Update Foreign Keys

create table sandboxpk.comment
 (
 a_category integer not null,
 a_pubdate timestamptz not null,
 a_title text not null,
 pubdate timestamptz,
 content text,

 primary key(a_category, a_pubdate, a_title, pubdate, content),

 foreign key(a_category, a_pubdate, a_title)
 references sandboxpk.article(category, pubdate, title)
);

Natural and Surrogate Keys

create table sandbox.article
 (
 id integer generated always as identity,
 category integer not null references sandbox.category(id),
 pubdate timestamptz not null,
 title text not null,
 content text,

 primary key(category, pubdate, title),
 unique(id)
);

Other Constraints

Normalisation Helpers

• Primary Keys

• Foreign Keys

• Not Null

• Check Constraints

• Domains

• Exclusion
Constraints

create table rates
 (
 currency text,
 validity daterange,
 rate numeric,

 exclude using gist
 (
 currency with =,
 validity with &&
)
);

Denormalization

Rules of Optimisation

Premature Optimization…

D O N A L D K N U T H

 “Programmers waste enormous amounts of time thinking about, or

worrying about, the speed of noncritical parts of their programs, and

these attempts at efficiency actually have a strong negative impact when

debugging and maintenance are considered. We should forget about

small efficiencies, say about 97% of the time: premature optimization

is the root of all evil. Yet we should not pass up our opportunities in

that critical 3%.”

"Structured Programming with Goto Statements”

Computing Surveys 6:4 (December 1974), pp. 261–301, §1.

Denormalization: cache

• Duplicate data for faster access

• Implement cache invalidation

Denormalization example

\set season 2017

 select drivers.surname as driver,
 constructors.name as constructor,
 sum(points) as points

 from results
 join races using(raceid)
 join drivers using(driverid)
 join constructors using(constructorid)

 where races.year = :season

group by grouping sets(drivers.surname, constructors.name)
 having sum(points) > 150
order by drivers.surname is not null, points desc;

Denormalization example
create view v.season_points as
 select year as season, driver, constructor, points
 from seasons left join lateral
 (
 select drivers.surname as driver,
 constructors.name as constructor,
 sum(points) as points
 from results
 join races using(raceid)
 join drivers using(driverid)
 join constructors using(constructorid)
 where races.year = seasons.year
 group by grouping sets(drivers.surname, constructors.name)
 order by drivers.surname is not null, points desc
)
 as points on true
order by year, driver is null, points desc;

Materialized View

create materialized view cache.season_points as
 select * from v.season_points;

create index on cache.season_points(season);

Materialized View

refresh materialized view cache.season_points;

Application Integration

select driver, constructor, points
 from cache.season_points
 where season = 2017
 and points > 150;

Denormalization: audit trails

• Foreign key references to other tables
won't be possible when those reference
changes and you want to keep a history
that, by definition, doesn't change.

• The schema of your main table evolves
and the history table shouldn’t rewrite
the history for rows already written.

History tables with JSONB

create schema if not exists archive;

create type archive.action_t
 as enum('insert', 'update', 'delete');

create table archive.older_versions
 (
 table_name text,
 date timestamptz default now(),
 action archive.action_t,
 data jsonb
);

Validity Periods

create table rates
 (
 currency text,
 validity daterange,
 rate numeric,

 exclude using gist (currency with =,
 validity with &&)
);

Validity Periods

 select currency, validity, rate
 from rates
 where currency = 'Euro'
 and validity @> date '2017-05-18';

-[RECORD 1]---------------------
currency | Euro
validity | [2017-05-18,2017-05-19)
rate | 1.240740

Denormalization Helpers:
Data Types

Composite Data Types

• Composite Type

• Arrays

• JSONB

• Enum

• hstore

• ltree

• intarray

• pg_trgm

Partitioning

Partitioning Improvements

PostgreSQL 10

• Indexing

• Primary Keys

• On conflict

• Update Keys

PostgreSQL 11

• Indexing, Primary
Keys, Foreign Keys

• Hash partitioning

• Default partition

• On conflict support

• Update Keys

Schemaless with JSONB

select jsonb_pretty(data)
 from magic.cards
 where data @> '{"type":"Enchantment",
 "artist":"Jim Murray",
 "colors":["White"]
 }';

Durability Trade-Offs

create role dbowner with login;
create role app with login;

create role critical with login in role app inherit;
create role notsomuch with login in role app inherit;
create role dontcare with login in role app inherit;

alter user critical set synchronous_commit to remote_apply;
alter user notsomuch set synchronous_commit to local;
alter user dontcare set synchronous_commit to off;

Per Transaction Durability
SET demo.threshold TO 1000;

CREATE OR REPLACE FUNCTION public.syncrep_important_delta()
 RETURNS TRIGGER
 LANGUAGE PLpgSQL
AS
$$ DECLARE
 threshold integer := current_setting('demo.threshold')::int;
 delta integer := NEW.abalance - OLD.abalance;
BEGIN
 IF delta > threshold
 THEN
 SET LOCAL synchronous_commit TO on;
 END IF;
 RETURN NEW;
END;
$$;

Horizontal Scaling
Sharding with Citus

Five Sharding Data Models
and which is right?

• Sharding by
Geography

• Sharding by
EntityId

• Sharding a graph

• Time Partitioning

Ask Me Two Questions!

Dimitri Fontaine
Citus Data

P G C O N F E U 2 0 1 8 , L I S B O N | O C T O B E R 2 4 , 2 0 1 8

