Hacking PostgreSQL

{2

2

<% CRUNCHY

Enterprise PostgreSQL

Stephen Frost

Chief Technology Officer @ Crunchy Data
Committer, PostgreSQL

Major Contributor, PostgreSQL
PostgreSQL Infrastructure Team

Default roles

Row-Level Security in 9.5

Column-level privileges in 8.4
Implemented the roles system in 8.3
Contributions to PL/pgSQL, PostGIS

Crunchy Data PGConf.EU 2018

2/ 36

PostgreSQL Source Code

Top Level

Backend Code

Top Level Source Directory

Directory [Description

config Config system for driving the build

contrib Source code for Contrib Modules, aka, Extensions
doc Documentation (SGML)

src/backend PostgreSQL Server (" Back-End")

src/bin psql, pg_dump, initdb, pg_upgrade, etc (" Front-End")
src/common Code common to the front and back ends

src/fe_utils Code useful for multiple front-end utilities
src/include Header files for PG, mainly back-end

src/include/catalog
src/interfaces
src/pl

src/port

src/test
src/timezone
src/tools

Crunchy Data

Definition of the PostgreSQL catalog tables (pg-catalog.* tables)
Interfaces to PG, including libpg, ECPG
Core Procedural Languages (plpgsql, plperl, plpython, tcl)
Platform-specific hacks
Regression tests
Timezone code from IANA
Developer tools (including pgindent)
PGConf.EU 2018

3/36

PostgreSQL Source Code

Top Level
Backend Code

Backend Code - Down the Rabbit Hole

Directory l Description

access Methods for accessing different types of data (heap, btree indexes, gist/gin, etc).
bootstrap Routines for running PostgreSQL in " bootstrap” mode (by initdb)

catalog Routines used for modifying objects in the PG Catalog (pg-catalog.*)

commands | User-level DDL/SQL commands (CREATE/ALTER, VACUUM/ANALYZE, COPY, etc)
executor Executor, runs queries after they have been planned/optimized

foreign Handles Foreign Data Wrappers, user mappings, etc

jit Provider independent Just-In-Time Compilation infrastructure

lib Code useful for multiple back-end components

libpq Backend code for talking the wire protocol

main main(), determines how the backend PG process is starting and starts right subsystem
nodes Generalized "Node" structure in PG and functions to copy, compare, etc

optimizer Query optimizer, implements the costing system and generates a plan for the executor
parser Lexer and Grammar, how PG understands the queries you send it

partitioning | Common code for declarative partitioning in PG

po Translations of backend messages to other languages

Crunchy Data

PGConf.EU 2018 4 /36

PostgreSQL Source Code

Top Level
Backend Code

Backend Code - Part 2

Directory [Description

port Backend-specific platform-specific hacks

postmaster | The "main” PG process that always runs, answers requests, hands off connections
regex Henry Spencer's regex library, also used by TCL, maintained more-or-less by PG now
replication Backend components to support replication, shipping WAL logs, reading them in, etc
rewrite Query rewrite engine, used with RULEs, also handles Row-Level Security

snowball Snowball stemming, used with full-text search

statistics Extended Statistics system (CREATE STATISTICS)

storage Storage layer, handles most direct file i/o, support for large objects, etc

tcop "Traffic Cop”- this is what gets the actual queries, runs them, etc

tsearch Full-Text Search engine

utils Various back-end utility components, cacheing system, memory manager, etc

Crunchy Data PGConf.EU 2018 5 /36

Hacking PostgreSQL From an Idea..

Parser Chan,
Command C

What do you want to change?

Is your idea a new backend command?

Or a new backslash command for psql?

Looking for a way to improve performance?

°

(]

@ Maybe an improvement to pgbench?
°

@ Add a new authentication method?
°

Support another TLS/SSL/Encryption library?

Let's chat about changing an existing backend command...

Crunchy Data PGConf.EU 2018 6 /36

Hacking PostgreSQL From an Idea
Char

Command Co

Hacking the backend

Where to start when thinking about hacking the backend?

@ Depends on your idea, but | prefer the grammar
@ Grammar drives a lot
@ Also one of the harder places to get agreeement

@ Where is the grammar? It's in the parser.

Crunchy Data PGConf.EU 2018

7/ 36

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Cha

What is a Parser?

Parser vs. Grammar

Parser consists of two pieces- the Lexer and the Grammar

Lexer determines how to tokenize the input

]
]
@ Grammar defines what tokens can be used with each other and how
@ While parsing, the grammar collects information about the command
]

Once a full command is parsed, a function is called from the grammar

Crunchy Data PGConf.EU 2018 8 /36

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Ch

Where is the parser?

@ The parser is in src/backend/parser
@ In that directory are:

scan.l - Lexer, handles tokenization

gram.y - Definition of the grammar

parse_*.c - Specialized routines for parsing things
analyze.c - Tranforms raw parse tree into a Query
scansup.c - Support routines for the lexer

Crunchy Data PGConf.EU 2018 9 /36

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Char

Modifying the grammar

@ The grammar is a set of " productions” in gram.y
@ "main()” is the "stmt” production

@ Lists the productions for all of the top-level commands

@ "—" is used to indicate "this OR that”
stmt
AlterEventTrigStmt
| AlterCollationStmt
| AlterDatabaseStmt
| CopyStmt

Crunchy Data PGConf.EU 2018 10 / 36

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Cha

What about the COPY statement?

@ These are the top-level COPY productions
@ They refer to other productions though...

CopyStmt : COPY opt_binary qualified_name opt_column_list opt_oids
copy_from opt_program copy_file_name copy_delimiter opt_with copy_options

| COPY '(' PreparableStmt ')' TO opt_program copy_file _name opt_with copy_options

Crunchy Data PGConf.EU 2018 11 / 36

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Cha

COPY productions

@ These are the other COPY productions

copy_from:

FROM { $$ = true; }

| TO { $$ = false; }
opt_program:

PROGRAM { $$ = true; }

| /* EMPTY =«/ { $$ = false; }

i

copy_file_name:

Sconst {8 =81; }

| STDIN { $$ = NULL; }

| STDOUT { $$ = NULL; }
copy_options: copy_opt_list { $$ = 81; }

| '(' copy_generic_opt_list ')' { 8% =952;)

Crunchy Data PGConf.EU 2018

12 / 36

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Cha

COPY productions

L @ Multi-value productions look like this

copy_generic_opt_list:
copy_generic_opt_elem
! $$ = list_makel ($1);
| co;yfgenericfoptflist ',' copy_generic_opt_elem
{ $$ = lappend(S1, $3);
}

i

copy_generic_opt_elem:
ColLabel copy_generic_opt_arg
{
$$ = makeDefElem($1, $2, @1);
}

i

copy_generic_opt_arg:

opt_boolean_or_string { $$ = (Node *) makeString($1l); }
| NumericOnly { $$ = (Node *) $1; 1}
[{ $$ = (Node *) makeNode (A_Star); }

y Data PGConf.EU 2018 13 / 36

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Cha

COPY productions

Note the C template code in the grammar

Compiled as part of the overall parser in gram.c

o

o

@ "$%" is "this node"”

@ "$1" is the whatever the first value resolves to
o

"$3" is the whatever the third value resolves to

copy_generic_opt_list:
copy_generic_opt_elem
{ $$ = list_makel ($1);
| Coéyfgenericfoptfllst ', ' copy_generic_opt_elem
{ $$ = lappend(S1, $3);
}

Crunchy Data PGConf.EU 2018 14 / 36

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Cha

COPY options list

@ Production of COPY options

copy_opt_item:

BINARY
{
$$ = makeDefElem("format", (Node *)makeString("binary"), @1);
}
| OIDS
{
$$ = makeDefElem("oids", (Node x)makelnteger (true), @1);
}
| FREEZE

{
$$ = makeDefElem("freeze", (Node *)makelnteger (true),

}

Crunchy Data PGConf.EU 2018

@1);

Hacking PostgreSQL From an Idea.
Parser Changes

Command Code Cha

Adding a new COPY option

@ Add to the copy_opt_item production

@ Modify the C template(s) as needed

@ Also need to update the list of tokens / key words, kwlist.h
@ Has to be added to unreserved_keyword production

@ Always try to avoid adding any kind of reserved keyword

copy_opt_item:

BINARY
{
$$ = makeDefElem("format", (Node x)makeString("binary"), @1);
}
+ | COMPRESSED
+ {
+ $$ makeDefElem("compressed", (Node *)makeInteger (true), @1);
+ }
| OIDs

{

$$ = makeDefElem("oids", (Node x)makelnteger (true), @1);
}

Crunchy Data PGConf.EU 2018 16 / 36

Hacking PostgreSQL From an Id
Pa Char

Command Code Changes

What about the code?

typedef struct CopyStateData

{

bool
bool
+ bool
bool

binary;
oids;
compressed;
freeze;

Crunchy Data

/*
/*
/*
/*

The code for COPY is in src/backend/commands/copy.c
COPY has a function to process the options given
Conveniently, this function is ProcessCopyOptions()
CopyStateData exists to keep track of the COPY operation
Not in a .h since only COPY uses it

When defining a structure in a .c, put it near the top

binary format? =/

include OIDs? */
compressed file? x/

freeze rows on loading? */

PGConf.EU 2018

17 / 36

Hacking PostgreSQL From an Idea.
B r Cha

Command Code Cl

What about the code?

: @ Add in the code to handle the option passed in

ProcessCopyOptions (CopyState cstate,

}

+ else if (strcmp(defel->defname, "compressed") == 0)

+ {

+#ifdef HAVE_LIBZ

+ if (cstate->compressed)

+ ereport (ERROR,

+ (errcode (ERRCODE_SYNTAX_ERROR) ,

+ errmsg ("conflicting or redundant options")));
+ cstate->compressed = defGetBoolean (defel);

+#else

+ ereport (ERROR,

+ (errcode (ERRCODE_SYNTAX_ERROR) ,

+ errmsg ("Not compiled with zlib support.")));
+#endif

+ }

else if (strcmp(defel->defname, "oids") == 0)

18 / 36

Final Code

Is that it?
Not hardly.

@ Further changes to copy.c for a COMPRESSED state

@ Changes to track gzFile instead of FILE*

@ Also have to use gzread()/gzwrite()

@ Documentation updates in doc/src/sgml/ref/copy.sgml

@ Regression test updates

@ Resulting diffstat:
doc/src/sgml/ref/copy.sgml | 12 ++
src/backend/commands/copy.c I T R
src/backend/parser/gram.y | 9 +-
src/backend/storage/file/fd.c | 97 ++++++++tttt
src/include/parser/kwlist.h | 1 +
src/include/storage/fd.h | 9 ++
src/test/regress/input/copy.source | 20 +++
src/test/regress/output/copy.source | 18 +++

4

8 files changed, 583 insertions(+), 41 deletions(-)

Crunchy Data PGConf.EU 2018 19 / 36

PostgreSQL Subsystems

Datums and Tuples

Other Subsystems

PostgreSQL Subsystems

PostgreSQL has specific ways of handling

Memory management

Error logging / cleanup
Linked lists (multiple ways...)
Catalog lookups

Nodes

Datums and Tuples

Crunchy Data PGConf.EU 2018 20 / 36

Memory Management
Error Handling / L

@ Lookups

Nod
)}

atums and Tuples

PostgreSQL Subsystems

Other Subsystems

Memory Management

@ All memory is part of a memory context
@ Allocated through palloc()
@ Contexts exist for most of what you would expect

o CurrentMemoryContext - what palloc() will use
e TopMemoryContext - Backend Lifetime

o Per-Query Context
o Per-Tuple Context

Crunchy Data PGConf.EU 2018 21 /36

a ment
ing / Logging
Lookups

PostgreSQL Subsystems

tums and Tuples

Other Subsystems

Errors and Asserts

@ Internal "can't happen” cases can use elog()

o Always runs
e Should not be used where a user might see it
e May be useful for debugging

@ Assert() is also available

e Only runs in Assert-enabled builds
e Be wary of making Assert builds act differently from non-Assert builds
o Useful to make sure other hackers are using function properly

Crunchy Data PGConf.EU 2018 22 / 36

ment
Logging

PostgreSQL Subsystems
Datums and Tuples

Other Subsystems

Logging from PostgreSQL

+ 4+ o+ o+ +

@ Use ereport() with errcode() and errmsg()

@ error level and errmsg() are required

@ PG has a style guide for error messages

@ ERROR or higher and PG will handle most cleanup

e Rolls back transaction
o Frees appropriate memory contexts

if (gzwrite(cstate->copy_gzfile, fe_msgbuf->data,
fe_msgbuf->len) != fe_msgbuf->len)
ereport (ERROR,
(errcode_for_file_access(),
errmsg ("could not write to COPY file: %m")));

Crunchy Data PGConf.EU 2018

23 / 36

Error Handling
Catalog Lookups
Nod

Datums and Tuples

PostgreSQL Subsystems

Other Subsystems

SysCache and Scanning Catalogs

@ General function 'SearchSysCache’
@ Defined in utils/cache/syscache.c

Search a system catalog based on some key
Up to four keys can be used
Helper routines for fewer keys available (SearchSysCachel, etc)

]
]
]
o Must call ReleaseSysCache() when done with a tuple

@ Also some convenience routines in Isyscache.c

@ Look for existing routines before implementing a new one

Crunchy Data PGConf.EU 2018 24 / 36

PostgreSQL Subsystems

Datums and Tuples

Other Subsystems

Nodes

PostgreSQL expression trees are made up of Nodes

Each node has a type, plus appropriate data

"type’ of a Node is stored in the Node, allowing IsA() function
Nodes created using makeNode(TYPE)

Used extensivly by the grammar, but also elsewhere

To add a new Node type

o Add to include/nodes/nodes.h
o Create make / copy / equality funcs in backend/nodes/

Crunchy Data PGConf.EU 2018 25 / 36

PostgreSQL Subsystems

Other Subsystems

Datums

General structure for a given single value

Defined in postgres.h

Lots of helper routines for working with Datums

o Int32GetDatum(int) - Returns Datum representation of an Int32
o DatumGetInt32(Datum) - Returns int32 from a Datum
e Many others for each data type

@ Datums may be stored "out-of-line” (aka TOAST'd)

Crunchy Data PGConf.EU 2018 26 / 36

PostgreSQL Subsystems

Datums and Tuples
Other Subsystems

Tuples

Tuples are essentially "rows”, comprised of Datums and other things
Heap Tuple defined in include/access/htup.h
HeapTupleData is in-memory construct

Provides length of tuple, pointer to header

Many different uses

Pointer to disk buffer (must be pin'd)
Empty

Single pmalloc'd chunk

Seperately allocated

Minimal Tuple structure

Crunchy Data PGConf.EU 2018 27 / 36

PostgreSQL Subsystems

Datums and Tuples
Other Subsystems

Tuples - continued

HeapTupleHeaderData and friends are in htup_details.h
Number of attributes
Provides various flags (NULL bitmap, etc)

Data follows the header (not in the struct)

Lots of macros for working with tuples in details

Crunchy Data PGConf.EU 2018 28 / 36

PostgreSQL Subsystems

Datums and Tuples
Other Subsystems

Other Subsystems

@ Many simple things have already been written and generalized
@ Generalized code should go into 'src/backned/lib/’
@ Look for existing code

Existing code is already portable
Already been tested

Includes regression tests

Means you have less to write

Crunchy Data PGConf.EU 2018 29 / 36

PostgreSQL Subsystems

Datums and Tuples
Other Subsystems

Selection of Subsystems

Simple Linked List implementation - pg_list.h, list.c

Integrated/inline doubly- and singly- linked lists - ilist.h, ilist.c

Binary Heap implementation- binaryheap.c

Hopcroft-Karp maximum cardinality algorithm for bipartite graphs - bipartite_match.c
Bloom Filter - bloomfilter.c

Dynamic Shared Memory Based Hash Tables - dshash.c

HyperLoglLog cardinality estimator - hyperloglog.c

Knapsack problem solver - knapsack.c

Pairing Heap implementation - pairingheap.c

Red-Black binary tree - rbtree.c

String handling - stringinfo.c

Crunchy Data PGConf.EU 2018 30/ 36

Follow the mailing lists

S g Patches
Hacking the PostgreSQL Way ubmitting Patches

pgsql-hackers

Primary mailing list for discussion of PostgreSQL development

Get a PostgreSQL Account at https://postgresgl.org/account

@ Subscribe at https://lists.postgresqgl.org

Discuss your ideas and thoughts about how to improve PostgreSQL
Watch for others working on similar capabilities

Try to think about general answers, not specific

Be supportive of other ideas and approaches

What happened to COPY ... COMPRESSED ?

e Send and receive COPY data from program instead
e COPY ... PROGRAM 'zcat ...'

o Not quite identical but large overlap

e Simpler in a few ways than direct zlib support

Crunchy Data PGConf.EU 2018

31/ 36

https://postgresql.org/account
https://lists.postgresql.org

Follow the mailing lists

g Patches

Hacking the PostgreSQL Way

Code Style

Try to make your code 'fit in’
Follow the PG style guide in the Developer FAQ
Beware of copy/paste

Aim to be C99-compliant (with caveats)

Comments

e C-style comments only, no C++

o Generally on their own lines

e Describe why, not what or how

e Big comment blocks for large code blocks
e Functions, big conditions or loops

Crunchy Data PGConf.EU 2018 32 /36

Follow the mailing lists
Style

Hackir ith git
Submitting Patches

Hacking the PostgreSQL Way

Error Message Style

@ Three main parts to an error message

o Primary message
e Detail information
e Hint, if appropriate

Do not make assumptions about formatting
Do not end an error message with a newline
Use double-quotes when quoting

Quotes used for filenames, user identifiers, and other variables

Avoid using passive voice- use active voice, PostgreSQL is not a human

Crunchy Data PGConf.EU 2018 33 /36

Follow the mailing

Hacking with git
Submitting Patches

Hacking the PostgreSQL Way

Git crash-course

1 @ Clone down the repo-

e git clone https://git.postgresql.org/git/postgresql.git
o Creates postgresql directory as a git repo

@ cd into postgresql

@ Create a branch to work on
e git checkout -b myfeature
o Creates a local branch called myfeature

@ Hack on PostgreSQL! Make changes!

@ Commit changes and build a diff
e git add files changes
e git commit
e git branch —set-upstream-to=origin/master myfeature
o git format-patch @{u} —stdout >myfeature.patch

Crunchy Data PGConf.EU 2018 34 / 36

v the mailing lists

cking with git
Submitting Patches

Hacking the PostgreSQL Way

Submitting Your Patch

@ Patch format

o Context diff or git-diff
o lIdeally, pick which is better
e Multiple patches in one email- do not multi-email

@ Include in email to -hackers

Description of the patch
Regression tests
Documentation updates
pg_dump support, if appropriate

@ Register patch on https://commitfest.postgresql.org

Crunchy Data PGConf.EU 2018 35 /36

https://commitfest.postgresql.org

Follow the mailing lists

Hacking the PostgreSQL Way Stz (Peigies

Questions?

Thanks!

Crunchy Data PGConf.EU 2018 36 / 36

	PostgreSQL Source Code
	Top Level
	Backend Code

	Hacking PostgreSQL
	From an Idea..
	Parser Changes
	Command Code Changes

	Final Code
	PostgreSQL Subsystems
	Memory Management
	Error Handling / Logging
	Catalog Lookups
	Nodes
	Datums and Tuples
	Other Subsystems

	Hacking the PostgreSQL Way
	Follow the mailing lists
	Style
	Hacking with git
	Submitting Patches

