
Review of Patch Reviewing

Stephen Frost
Crunchy Data

stephen@crunchydata.com

PGConf.EU 2018
October 24, 2018



Introduction
Commitfests

Reviewing a Patch
Committers

About Patches
Committing Patches

Stephen Frost

Chief Technology Officer @ Crunchy Data

Committer, PostgreSQL

Major Contributor, PostgreSQL

PostgreSQL Infrastructure Team

Default roles

Row-Level Security in 9.5

Column-level privileges in 8.4

Implemented the roles system in 8.3

Contributions to PL/pgSQL, PostGIS

Crunchy Data PGConf.EU 2018 2 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

About Patches
Committing Patches

Reviewing Patches

Slightly different set of skills from C programming

Really helps to know C, but not required

Break code, not write code (mostly)

Patch submitters

Expect and plan to do reviews!
Committers make year-long schedules to review/apply patches

PostgreSQL has ’CommitFests’

An attempt to manage the volume

Crunchy Data PGConf.EU 2018 3 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

About Patches
Committing Patches

But Committing is Easy!

Why is committing a patch hard?

Not really the commit
Each patch needs to be carefully reviewed
Often refactoring should be done
Sometimes parts need to be rewritten (comments...)

Commitfests try to push it to the author

Code base improves when commits start out excellent
Authors should be learning from feedback
More work on patch authors reduces time committers spend
Reviewing good code is faster

Crunchy Data PGConf.EU 2018 4 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

About Patches
Committing Patches

The Bar (no, not that bar)

PostgreSQL code is very high quality

Need to keep it that way!
Lots of comments help

The onus/expectation is the committer gets code which meets this level

Reviewers are part of the system to make this happen

Not the reviewer’s job to fix the patch!

Different patches require different amounts of work

How far from the bar is it..?

Crunchy Data PGConf.EU 2018 5 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Introduction
Commitfest Application

What are Commitfests?

A month (typically) set aside by committers to review other people’s code

Patches submitted by anyone
Other committers’ code too

PostgreSQL 12 Commitfests

July 2018 - 200 Patches
September 2018 - 215 Patches
November 2018 - Already 179!
January 2019
March 2019

Non-committers review patches first

Patch review is iterative during the CommitFest

Only when reviewer is happy does it go to committer

Crunchy Data PGConf.EU 2018 6 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Introduction
Commitfest Application

Tracking it all

https://commitfest.postgresql.org

We have a website for that!

Community accounts

Need a community account to make changes
Useful for lots of other PG sites too!
https://www.postgresql.org/account/

Based on / integrated with mailing lists

Authors post patches to -hackers
Authors then add patch to commitfest app with link to -hackers
Reviews posted to the patch thread
Commits go to -committers

Crunchy Data PGConf.EU 2018 7 / 25

https://commitfest.postgresql.org
https://www.postgresql.org/account/


Introduction
Commitfests

Reviewing a Patch
Committers

Introduction
Commitfest Application

Commitfest Statuses

Needs Review (pick it up!)

You can add yourself!
Click on the patch, then ’Become Reviewer’
Try to only claim a patch to review if you are actively working on it

Waiting on Author

Indicates patch has been reviewed
Patch review asked author to make changes
Authors should try to minimize time in this state

Ready for Committer

Patch reviewer feels patch is ready for commit
Should not be set by patch author generally

Others: Committed, Returned w/ Feedback, Rejected

Crunchy Data PGConf.EU 2018 8 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Steps to reviewing a patch

https://wiki.postgresql.org/wiki/Reviewing_a_Patch

Submission review (correct format, et al)

Usability/Feature Functionality review

Performance review

Code Review

Architecture review

Lastly, post the review and update status

Crunchy Data PGConf.EU 2018 9 / 25

https://wiki.postgresql.org/wiki/Reviewing_a_Patch


Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Submission Review

Patch sent to -hackers?

Correct format (context diff), or git format-patch

No pull requests!

Review for completeness

Description of the patch/change
Updates documentation, if appropriate
Regression tests!
pg dump/pg restore support

Crunchy Data PGConf.EU 2018 10 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Style Review

Check the PostgreSQL Style guides

Documentation style guide
https://www.postgresql.org/docs/current/static/
docguide-style.html
Error message style guide
https://www.postgresql.org/docs/current/static/
error-style-guide.html

Review documentation and error messages to make sure they comply

Crunchy Data PGConf.EU 2018 11 / 25

https://www.postgresql.org/docs/current/static/docguide-style.html
https://www.postgresql.org/docs/current/static/docguide-style.html
https://www.postgresql.org/docs/current/static/error-style-guide.html
https://www.postgresql.org/docs/current/static/error-style-guide.html


Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Documentation Style

Each command has a reference page for it

Should include

Name (of the command...)
Synopsis
Description
Options, as appropriate
Exit Status, if a command line tool
Usage
Environment variables, if appropriate
Files used, if appropriate
Notes / Examples / History / See Also
Author, but only in the contrib section

Crunchy Data PGConf.EU 2018 12 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Error Message Style

There are three main parts to an error message

Primary message
Detail information
Hint, if appropriate

Check that these are included

Also look for SQL state, if appropriate

Should not make assumptions about formatting

Should not end an error message with a newline

Double-quotes should be used when quoting

Quotes used for filenames, user identifiers, and other variables

Should not use passive voice- use active voice, PostgreSQL is not a human

Crunchy Data PGConf.EU 2018 13 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Usability and Feature Functionality Review

Does it do what it says it does?

Read updated documentation
Review Regression tests!
Check that they all pass (make check)
See if they make sense!
Consider if more should be added

Any compiler warnings? (There should not be)

Try to make PG crash. ;)

Crunchy Data PGConf.EU 2018 14 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Performance Review

Stress test the patch for weeks!

Ok, no, maybe not
Review Regression tests!

Does the patch claim to improve performance

Look for / ask for performance tests
Ask about the worst case
Consider if this makes some cases slower
If possible, confirm/retest benchmarks

If patch is a new feature but very slow, ask the author

Crunchy Data PGConf.EU 2018 15 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Code Review - Format

Tab-based alignment (4-column hard tabs)

No cuddling braces (brackets- {, }, get their own lines)

80-character lines (use pg indent!)

No C++ style comments (no // comment)

C99, with some caveats

Ok, no, maybe not
Review Regression tests!

Consider code flow, style

Should look like one author wrote the section

Crunchy Data PGConf.EU 2018 16 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Code Review - Look at the code!

Existing subsystems should be used

We don’t need/want 5 different linked list implementations
(we already have 3)
Be familiar with what we have: backend/{libs,utils}/ ; common/
No direct malloc() calls in backend, should use palloc()!
Use existing macros!

Comments, comments, comments

Look for good comments, look for ’XXX’/’TODO’/’NOTE’s also
Functions should have a multi-line comment block above
Did function args change (or what they do..)? comment better change!
Comments should precede every major if/while/etc block
Should answer the ’Why are we doing this?’
We can read what the code is doing- no need to say it again

Crunchy Data PGConf.EU 2018 17 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Code Review - functions and more...

Use functions if possible!

Could a big block be functionalized?
Clear inputs/outputs for the block
Maybe parts could be broken out as functions?
Is the code common enough to be useful elsewhere?

Watch for duplicated code- probably should be functions

Look for copy/paste happening

Check for patterns in differences
Consider if any places might have been missed
New structure member added? Check over structure usages
Watch for abstraction layer violations

Crunchy Data PGConf.EU 2018 18 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Architecture Review - really more code...

PostgreSQL has defined subsystems

APIs exist between the systems

Look for abstractions / simplifications

Should only include headers needed

Committers review this carefully, so don’t stress

Crunchy Data PGConf.EU 2018 19 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Post Your Review!

Post should be sent to -hackers AND CC Author, at least

Generally we ’reply all’ on PG mailing lists

Try to maintain threading, reply to patch post

Update commitfest application with new state

Be specific about what you reviewed

When suggesting changes to the patch-

Be specific, include actionable changes
Include details, such as what you did to cause a crash

Should it be marked ready for committer?

Needs to be more than just ”looks good to me”
Consider it a ’book report’ of the patch
Review is for the author and the committer

Crunchy Data PGConf.EU 2018 20 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Updating the Status
Transistions by reviewers

Needs Review TO Waiting on author

Your review includes suggested changes
Author updates patch, then sets back to Needs Review

Needs Review TO Returned with feedback

Patch not ready for commit
Final review done for this Commitfest

Needs Review TO Rejected

Will not be accepted
May mean the wrong approach is used
Might be a ”feature” the community does not want to have

Needs Review TO Ready for Committer

Only once patch has been fully reviewed

Crunchy Data PGConf.EU 2018 21 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Updating the Status

Transistions by authors

Waiting on author TO Needs Review

Patch has been updated
New version needs to be reviewed again

Ready for Committer TO Committed

Might be done by committer
Could really be done by anyone

Crunchy Data PGConf.EU 2018 22 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Steps of a Review
Code Review
Posting Review

Updating the Status

Transistions by committers

Ready for committer TO Waiting on author

Committer asks for more changes
Review what the committer said!
Updated patch goes back to Needs Review

Ready for Committer TO Committed

Could really be done by anyone

Ready for Committer TO Rejected

Committer decides the patch is not what we want

Ready for Committer TO Returned with feedback

Committer decides the patch is not ready to be committed

Crunchy Data PGConf.EU 2018 23 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Committer changes

When the committer changes things or disagrees

Learn from the comments made by the committer

If committer changed the code- review what was changed

Paticipate in the patch thread

Do not think of review as fire and forget

Consider if the wiki needs updating!

Ask me to update my talk ;)

Crunchy Data PGConf.EU 2018 24 / 25



Introduction
Commitfests

Reviewing a Patch
Committers

Committer changes

Questions?

Thanks!

Crunchy Data PGConf.EU 2018 25 / 25


	Introduction
	About Patches
	Committing Patches

	Commitfests
	Introduction
	Commitfest Application

	Reviewing a Patch
	Steps of a Review
	Code Review
	Posting Review

	Committers
	Committer changes


