
Postgres As Your New DevStack

Postgres as a tool for software developers

Susanne Schmidt

PGConf.eu 2018 (Lisbon)

Who am I?

Susanne “Su-Shee” Schmidt

tech lead at SysEleven GmbH (Berlin)

political scientist by education

doing open source since 1995

has cats

likes steak AND icecream!

What am I talking about?

beyond SQL: what can you do with Postgres?

not a DBA: what does Postgres offer you?

why not treat it like any other dev stack?

configure it - augment it - write code in it - make it
an API - version it - CD/CI it - devstack it -
dockerize it - test it

Start with Docker All The Things!

build a docker container!

docker build -t kittydatabase .

Postgres has an official docker container

quick and dirty also easy

you can also BUILD a Postgres to your liking!

Configure Postgres

make a nice prompt:
\set PROMPT1 ‘%n@%`hostname`[%/]: ‘

enable “\timing”:
\set timing

enable one history per database:
\set HISTFILE $HOME/.psql_history-:DBNAME

The "print" Equivalents

psql:
\echo 'foo something'

functions:
RAISE NOTICE 'something does not look right'

(and other common loglevels: INFO, DEBUG, ERROR..)

USING HINT = "check this input!"

(and other options: DETAIL, MESSAGE, ERRCODE...)

Start “cheap”: Make Views

hide long SELECTs behind a cosy VIEW

CREATE VIEW kitty_by_breed AS...

CREATE VIEW kitty_by_country AS...

CREATE VIEW kitty_by_size AS...

CREATE VIEW kitty_by_age AS …

present it as a unified API-like interface

Your View-API a Pseudo-Cache:
Materialized Views

CREATE MATERIALIZED VIEW kitty_by_breed AS…

CREATE MATERIALIZED VIEW kitty_by_country AS…

CREATE MATERIALIZED VIEW kitty_by_age AS…

still a lovely API

now with possible indices and superfast!

Satisfy Your Inner Pedant: Use Constraints

Stronger than types - validate more strict

cats.origin VARCHAR(2)

cats.origin TEXT CHECK (LENGTH(origin) = 2)

CREATE TYPE origin_country AS ENUM('DE', 'FR', 'GB')

cats.origin origin_country

CHECK (some value with another value)

Automate ALL The Things: Triggers

automate away lots of interactions

"events" available:

INSERT, UPDATE, DELETE, TRUNCATE

"before" and "after" that.

Developer? Write Code, Write Functions!

functions - the heart of your code

functions - needed to be attached to a trigger

functions - to create new features

Functions to beautify

show_table_comments() looks somewhat better than:

SELECT tablename, obj_description(tablename::regclass)

 as comment

FROM pg_catalog.pg_tables

WHERE schemaname != ‘pg_catalog’

AND schemaname != ‘information_schema’;

* yes, \dd :)

Functions to simplify
lots of people creating a JSON API-alike because:
data <@ '{"a":1,"b":2}'::jsonb

select * from dox.find_one(collection => 'customers',

 term => '{"name": "Jill"}');
https://rob.conery.io/2018/07/05/a-pure-postgresql-document-database-api/

SELECT json_append('{"a": 1}', '{"b": 2, "c": 3, "a": 4}');

https://gist.github.com/matheusoliveira/9488951

Functions to fill gaps
helper functions and little niches you need

more statistics or datetime functions

 DECLARE kitty_age text;

 BEGIN

 SELECT age(birth) INTO kitty_age;

 RETURN replace(kitty_age, 'mons', 'months');

 END;

Example: https://pgxn.org/dist/pgsql_tweaks/0.2.5/

Functions.. You Don’t Like PL/PgSQL?

you can have functions in:

Perl, Tcl, Python from base distribution

additionally from the outside:

Java, Lua, R, Shell, JavaScript (v8)

Be Part of a Processing Chain: Exporters

Export as JSON, XML, CSV, TEXT

psql via CLI

inside the database

COPY ... TO ... stdout/foo.csv

row_to_json etc

query_to_xml etc

Helpful parameters:

\t tuples on/off (Remove Headers etc)

\o set output file

\a unaligned output

DELIMITERS for CSV

Be Part of a Processing Chain: Import

Import CSV, TEXT
COPY FROM ...

JSON (hmm)
\set content + temporary table

json_populate_recordset

XML Chtulhu

lots of xpath to extract data into table

Be Part of a Processing Chain: psql
as long as you output simple text-based formats:
\o | /usr/bin/gnuplot

psql -c ... | gnuplot

$ gnuplot

set style data lines

set datafile separator "|"

....

plot "< psql -c 'select foo from blubb' "

 <gnuplot dragon syntax here>

Processing Chain? Be a publisher!

Postgres LISTEN/NOTIFY is really simple!
LISTEN mychannel;

NOTIFY mychannel, 'my payload';

Or, pg_notify in function and a trigger plus

clients in PG-modules supporting "LISTEN/NOTIFY".

… and LISTEN from somewhere else!

ANY library/module supporting it:

client.on('notification', function(msg) {

 console.log(msg);

});

client.query("LISTEN mychannel");

Pushed enough data out? Pull Data in!

foreign data wrappers:

for files and other databases

dblink extension:

for other postgreses

FDW FTW: Multicorn

Python module - not C!

makes it easier to write a wrapper

supports lots of wrappers out of the box

https://wiki.postgresql.org/wiki/Foreign_data_wrappers

Use other people’s code: Extensions

modules and libraries are "extensions" in Postgres:

helpful basics to just enable (postgresql-contrib package!)
pgcrypto, uuid, fuzzystrmatch...

external extensions adding featurezzz:
postgis

pgtap

Take a look at https://pgxn.org/ !

https://pgxn.org/

Write Extensions Yourself!

Write extensions in PLSQL or in C!

set up "control" file (recognize as extension)

write "the extension"

add Makefile to install extension

call CREATE EXTENSION

Code Quality: Comments

COMMENT on everything!

COMMENT ON TABLE cats

IS ‘my awesome cat table’;

COMMENT ON VIEW kitty_by_breed

IS ‘my superefficient mega kitty select’;

Code Quality: Tests

PgTAP – unit tests for postgres

BEGIN;
SET search_path TO customers, public;

SELECT * FROM no_plan();

SELECT has_schema('customers');
SELECT has_table('customers');

SELECT * FROM finish();
ROLLBACK;

Oh, and SQL works too ;)

Postgres can also totally do this SQL thing!1! :)

Why would you bother with so much work?!

You’re not sure anymore if ORMs are a good thing

You hate cluttered/long/weird code

The concept of APIs and facades appeals to you

You really like Postgres and want to use it with EVERYTHING

Your DB IS your “single point of truth”

You want to be able to change the stack ABOVE the database

more easily – but not the database

You think a database is more than just a dumping ground for data

You are suddenly faced with “err.. we need to keep this data for 10 years for tax/legal reasons...”

Thank you very much!

Slides: https://gitlab.com/Su-Shee

Code: https://gitlab.com/Su-Shee

New Logo Suggestions :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

