
Copyright©2018 NTT Corp. All Rights Reserved.

AUTO PLAN TUNING

USING

FEEDBACK LOOP

PGConf.EU 2018

Tatsuro Yamada

NTT Open Source Software Center

2Copyright©2018 NTT Corp. All Rights Reserved.

Who I am?

•Tatsuro Yamada

- From Tokyo, Japan

•Work

- for NTT Open Source Software Center

- Database consulting for NTT Group companies

- Oracle_fdw committer

- Organizers of PGConf.Asia

•Interest

- Listening to Bossa-nova and Jazz samba

- Skiing, Craft beer

- Plan tuning

3Copyright©2018 NTT Corp. All Rights Reserved.

1. Background of plan tuning

2. Mechanism of pg_plan_advsr

3. Verification of effectiveness using

Join order benchmark

4. Thoughts about the future PostgreSQL

5. Conclusion

Agenda

4Copyright©2018 NTT Corp. All Rights Reserved.

Background of plan tuning

fuji-japan by www.travelbusy.com under CC BY 2.0

5Copyright©2018 NTT Corp. All Rights Reserved.

•What are these graphs?

Question

236 sec 109 sec 103 sec

Faster

・PostgreSQL?

・SQL Server?

・Oracle?

These are before and after plan tuning in PostgreSQL
After

6Copyright©2018 NTT Corp. All Rights Reserved.

•Because

Why do we need plan tuning?

Slow query Inefficient plan

Low-spec

hardware

Vast data

・
・

What does plan inefficiency mean?

7Copyright©2018 NTT Corp. All Rights Reserved.

•An Inefficient plan is one that’s not appropriate plan

for the data.

•As a result, following things could occur :

• Long execution time

• Resources being consuming wastefully

• Processing not finished within the batch window

What is an inefficient plan?

Where is the cause of an inefficient plan?

8Copyright©2018 NTT Corp. All Rights Reserved.

Where is the cause of an inefficient plan?

Inefficient

plan

Bad

scan method

Bad

join method

Bad

join order

Design error

Planner’s mistake

Reasons Root cause

e.g.

Forgot

creating

Index

Problem

Config?

Stats?

Specs?

Planner takes mistakes sometimes.

What kind of mistakes?

9Copyright©2018 NTT Corp. All Rights Reserved.

•The planner "guesses" a plan using cost base optimization.

•With a simple notion of "cost", each plan node's cost can

be calculated by the following formula [1].

• If “C” or “N” is wrong, the cost estimate is wrong.

That may lead to an inefficient plan.

Revisit Planner behavior

[1] cited from: “Beyond EXPLAIN: Query Optimization From Theory To Code”

by YutoHayamizu, RyojiKawamichi PGCon 2016

e.g.

10Copyright©2018 NTT Corp. All Rights Reserved.

•Cardinality estimation error

(aka Row count estimation error)
• Over estimate

• Estimated Rows = 5000 but Actual Rows = 1

• Under estimate

• Estimated Rows = 1 but Actual Rows = 50000

•The Ideally, there should be no cardinality estimation error.

•Such mistakes tend to select an inefficient plan.

Well known examples of planner mistakes

See: https://blog.pgaddict.com/posts/common-issues-with-planner-statistics

DBA and user have to do various tunings.

11Copyright©2018 NTT Corp. All Rights Reserved.

•Improve accuracy of estimated rows

• Change the acquisition timing and sampling amount for Stats

• Use extended statistics

• Use pg_dbms_stats

•Modify scan, join methods and join order

• Index tuning

• Use GUC parameter

• Rewrite queries

• Use Optimizer Hint

Conventional plan tuning methods

EXPLAIN ANALYZE command for the tunings

12Copyright©2018 NTT Corp. All Rights Reserved.

•If we can correct cardinality estimations directly ,

we can be got more efficient plan?!

• Because, we know Actual rows by Explain Anayze command.

Idea for getting more efficient plan

A B

(A B)

Seq Scan

est: 80

act: 100

Index Scan

est: 10

act: 12

Hash Join

est:1000

act:10

A B

(A B)

Seq Scan

est: 100

act: 100

Index Scan

est: 12

act: 12

Nest Loop

est:10

act:10

Fix

e.g.

The idea is simple, but implementation is hard

because there is no interface.

13Copyright©2018 NTT Corp. All Rights Reserved.

Mechanism of pg_plan_advsr

14Copyright©2018 NTT Corp. All Rights Reserved.

• This is used to achieve the desired output.

• Theory: Feedback is a mechanism that compares the output

target value with the actual output value and automatically

controls the output value and the target value to be equal.

Control engineering: Feedback Loop

https://en.wikipedia.org/wiki/Control_theory

https://en.wikipedia.org/wiki/Control_engineering

Controller System

Sensor

INPUT OUTPUT+

-

Feedback path

How does this extension use feedback loop?

Feedback

information

15Copyright©2018 NTT Corp. All Rights Reserved.

Rough concept of pg_plan_advsr using feedback

Plan advsr
(Controller)

Planner

Plan advsr
(Sensor)

Query Plan,

Result
+

-

3. Correct cardinality estimation errors

1. Detect differences between

estimated and actual rows.

2. Apply feedback information

to next execution of query

4. Recording

Feedback path

16Copyright©2018 NTT Corp. All Rights Reserved.

•The extension has four processes:

1. Detect differences between estimated and actual

rows by inspecting plan tree

2. Apply feedback information to next execute of query

3. Correct cardinality estimation errors

4. Record Plan history

Overview of pg_plan_advsr

17Copyright©2018 NTT Corp. All Rights Reserved.

•The extension searches in plan nodes recursively, and

detect differences between estimated and actual rows.

• Feedback information is made in this phase.

.

1. Detect differences by inspecting plan tree

A B

(A B)

Seq Scan

est: 80

act: 100

Index Scan

est: 10

act: 12

Hash Join

est:1000

act:10
Detected!

e.g.

Detected!

Detected!

18Copyright©2018 NTT Corp. All Rights Reserved.

•The extension applies feedback information to next

execution of query to correct estimation error.

2. Apply feedback info to next query

Query Planner

Query

Feedback

information

Planner

First time

Second time

19Copyright©2018 NTT Corp. All Rights Reserved.

•By using feedback information, planner will likely select

an efficient plan because costs are accurate.

3. Correct cardinality estimation errors

A B

(A B)

Seq Scan

est: 80

act: 100

Index Scan

est: 10

act: 12

Hash Join
est:1000

act:10

A B

(A B)

Seq Scan

est: 100

act: 100

Index Scan

est: 12

act: 12

Nest Loop
est:10

act:10

Correct

First time Second time

20Copyright©2018 NTT Corp. All Rights Reserved.

•pg_plan_advsr does local search to find an efficient plan.

• In the search process, the plan may temporarily get worse.

Local search

Local optimum

Global optimum？

Execution

Time

Plan space

21Copyright©2018 NTT Corp. All Rights Reserved.

•There's a possibility that plan will not converge by

feedback, and sometimes get worse during tuning.

•Therefore, the extension records plan history so as

to allow investigation and also pick the most efficient

plan from the history.

4. Record plan history

Iterations Query Plan Execution

time

0 Query 1 PLAN A 100 ms

1 Query 1 PLAN B 200 ms

2 Query 1 PLAN C 80 ms

3 … … …

e.g. plan history table

22Copyright©2018 NTT Corp. All Rights Reserved.

1. Detecting differences to create feedback information

・ExecutorEnd_hook

・New walker of queryDesc

2. Applying feedback information to next execute of query
and

3. Correcting cardinality estimation errors

・pg_hint_plan’s Hint table feature

4. Record Plan history

・ExecutorEnd_hook

・Create Plan_history table to store all information

・pg_store_plans is also used to store plan texts

Implementation of pg_plan_advsr

23Copyright©2018 NTT Corp. All Rights Reserved.

•When?

• This extension is assumed to be used in the plan tuning

process within system development.

•How to use?

• Use explain analyze command until no estimation error.

When and How to use?

24Copyright©2018 NTT Corp. All Rights Reserved.

Verification of effectiveness using

Join order benchmark

25Copyright©2018 NTT Corp. All Rights Reserved.

•PG 10.4

•Data is stable and on memory (using pg_prewarm)

•Iterations for tuning: Maximum 64 times per Query
• (Iterations are completed when estimated rows equal actual rows)

•Benchmark: Join order benchmark (113 queries)

•Parameters
• random_page_cost 2

• shared_buffers 2GB

• work_mem 16MB

• default_statistics_target 100

• geqo_threshold 18

• max_worker_processes 8

• max_parallel_workers_per_gather 0

• max_parallel_workers 0

• shared_preload_libraries = pg_hint_plan, pg_plan_advsr, pg_store_plans

Preconditions of measurement

26Copyright©2018 NTT Corp. All Rights Reserved.

•Jupyter notebook as a frontend

My environment

Tuning process: 3000 sec

Converged: 104 queries

Not converged: 9 queries

27Copyright©2018 NTT Corp. All Rights Reserved.

Results

•Query execution time is reduced by 50% of the

original (236sec -> 103sec)

•What’s happened?

236 sec 109 sec 103 sec

54% 56%

After

28Copyright©2018 NTT Corp. All Rights Reserved.

•Almost all queries execution time are decreasing.

Especially, middle part of the graph.

Difference between baseline and fastest

※X-axis is Query number

Before

After

29Copyright©2018 NTT Corp. All Rights Reserved.

•Top 5 long execution times were halved.

Top 5 long execution times

63% down (19s -> 7s)

30Copyright©2018 NTT Corp. All Rights Reserved.

Expected behavior of execution times

• Ideally, it would be nice to get the following behavior

for all queries

31c.sql

31Copyright©2018 NTT Corp. All Rights Reserved.

Execution Time history of query 16b (Q16b)

16b.sql

•However, I got a good plan after several bad plans.

We can accept this behavior, because this

extension focuses on plan tuning

in test phase, not in production.

32Copyright©2018 NTT Corp. All Rights Reserved.

•Q16b includes 7 joins and 2 aggregate functions.

An Example (Query 16b of join order benchmark)

SELECT MIN(an.name) AS cool_actor_pseudonym,

MIN(t.title) AS series_named_after_char

FROM aka_name AS an,

cast_info AS ci,

company_name AS cn,

keyword AS k,

movie_companies AS mc,

movie_keyword AS mk,

name AS n,

title AS t

WHERE cn.country_code ='[us]'

AND k.keyword ='character-name-in-title'

AND an.person_id = n.id

AND n.id = ci.person_id

AND ci.movie_id = t.id

AND t.id = mk.movie_id

AND mk.keyword_id = k.id

AND t.id = mc.movie_id

AND mc.company_id = cn.id

AND an.person_id = ci.person_id

AND ci.movie_id = mc.movie_id

AND ci.movie_id = mk.movie_id

AND mc.movie_id = mk.movie_id;

33Copyright©2018 NTT Corp. All Rights Reserved.

•The history table has all information of plan tuning.

•You can see the Plan id had changed until the last time.

Times Queryid Plan_id Execution_time Total_diffs

0 … 671501202 19396.89 9670384

1 … 3725435884 24567.85 9504160

2 … 3151720077 35021.45 13242801

3 … 150735307 43750.84 17546662

4 … 1918733225 58548.67 23380179

5 … 1368113010 7145.19 0

Plan history of Q16b

Rows_hint Scan_hint Join_hint Lead_hint

… … … …

(ms)

“Total_diffs” is the sum of row count

estimation errors in the joins
Feedback control has worked!

34Copyright©2018 NTT Corp. All Rights Reserved.

•Before

Plan shapes of Q16b

k mk

(k mk)

(k mk t)

(k mk t mc)

(k mk t mc cn)

(k mk t mc cn n)

(k mk t mc cn n an)

t

mc

cn

n

an Nested Loop

Nested Loop

35Copyright©2018 NTT Corp. All Rights Reserved.

•After

Plan shapes of Q16b

k mk

(k mk)

(k mk t)

(k mk t mc)

(k mk t mc cn)

(k mk t mc cn n)

(k mk t mc cn n an)

t

mc

cn

n

an Hash Join

Hash Join

36Copyright©2018 NTT Corp. All Rights Reserved.

Before After

•By correcting estimated rows on lower nodes,

join method and join order on the top node got fixed

automatically.

Plan shapes of Q16b

Aggregate (cost=4645.64..4645.65 rows=1 width=64) (actual time=20608.515..20608.515 rows=1 loops=1)

-> Nested Loop (cost=7.51..4630.64 rows=2999 width=33) (actual time=5.001..19980.694 rows=3710592 loops=1)

Join Filter: (n.id = an.person_id)

-> Nested Loop (cost=7.09..4021.98 rows=1253 width=25) (actual time=4.989..12126.936 rows=2832555 loops=1)

-> Nested Loop (cost=6.66..3456.63 rows=1253 width=21) (actual time=4.974..4445.613 rows=2832555 loops=1)

Join Filter: (t.id = ci.movie_id)

-> Nested Loop (cost=6.09..3333.83 rows=66 width=29) (actual time=4.768..886.401 rows=68316 loops=1)

-> Nested Loop (cost=5.67..3251.47 rows=186 width=33) (actual time=4.738..431.818 rows=148552 loops=1)

-> Parallel Nested Loop (cost=5.24..3231.47 rows=34 width=25) (actual time=4.724..225.903 rows=41840 loops=1)

-> Nested Loop (cost=4.81..3215.61 rows=34 width=4) (actual time=4.714..65.081 rows=41840 loops=1)

-> Seq Scan on keyword k (cost=0.00..2626.12 rows=1 width=4) (actual time=0.445..10.156 rows=1 loops=1)

Filter: (keyword = 'character-name-in-title'::text)

Rows Removed by Filter: 134169

-> Bitmap Heap Scan on movie_keyword mk (cost=4.81..586.42 rows=307 width=8) (actual time=4.267..47.872 rows=41840 loops=1)

Recheck Cond: (keyword_id = k.id)

Heap Blocks: exact=11541

-> Bitmap Index Scan using keyword_id_movie_keyword (cost=0.00..4.74 rows=307 width=0) (actual time=2.816..2.816 rows=41840 loops=1)

Index Cond: (keyword_id = k.id)

-> Index Scan using title_pkey on title t (cost=0.43..0.47 rows=1 width=21) (actual time=0.003..0.003 rows=1 loops=41840)

Index Cond: (id = mk.movie_id)

-> Index Scan using movie_id_movie_companies on movie_companies mc (cost=0.43..0.54 rows=5 width=8) (actual time=0.003..0.004 rows=4 loops=41840)

Index Cond: (movie_id = t.id)

-> Index Scan using company_name_pkey on company_name cn (cost=0.42..0.44 rows=1 width=4) (actual time=0.003..0.003 rows=0 loops=148552)

Index Cond: (id = mc.company_id)

Filter: ((country_code)::text = '[us]'::text)

Rows Removed by Filter: 1

-> Index Scan using movie_id_cast_info on cast_info ci (cost=0.56..1.39 rows=38 width=8) (actual time=0.010..0.045 rows=41 loops=68316)

Index Cond: (movie_id = mk.movie_id)

-> Index Only Scan using name_pkey on name n (cost=0.43..0.45 rows=1 width=4) (actual time=0.002..0.002 rows=1 loops=2832555)

Index Cond: (id = ci.person_id)

Heap Fetches: 2832555

-> Index Scan using person_id_aka_name on aka_name an (cost=0.42..0.46 rows=2 width=20) (actual time=0.002..0.002 rows=1 loops=2832555)

Index Cond: (person_id = ci.person_id)

Aggregate (cost=569619.76..569619.77 rows=1 width=64) (actual time=7724.114..7724.114 rows=1 loops=1)

-> Hash Join (cost=488969.61..551066.80 rows=3710592 width=33) (actual time=6148.042..7284.667 rows=3710592 loops=1)

Hash Cond: (an.person_id = n.id)

-> Seq Scan on aka_name an (cost=0.00..20409.43 rows=901343 width=20) (actual time=0.006..125.215 rows=901343 loops=1)

-> Hash (cost=434198.68..434198.68 rows=2832555 width=25) (actual time=6147.564..6147.564 rows=2832555 loops=1)

Buckets: 262144 Batches: 16 Memory Usage: 12256kB

-> Hash Join (cost=172645.20..434198.68 rows=2832555 width=25) (actual time=1244.367..5588.425 rows=2832555 loops=1)

Hash Cond: (ci.person_id = n.id)

-> Nested Loop (cost=6986.59..183304.07 rows=2832555 width=21) (actual time=57.009..2836.849 rows=2832555 loops=1)

Join Filter: (t.id = ci.movie_id)

-> Hash Join (cost=6986.02..56192.08 rows=68316 width=29) (actual time=56.826..536.766 rows=68316 loops=1)

Hash Cond: (mc.company_id = cn.id)

-> Nested Loop (cost=5.67..47336.27 rows=148552 width=33) (actual time=5.417..443.411 rows=148552 loops=1)

-> Nested Loop (cost=5.24..22733.15 rows=41840 width=25) (actual time=5.382..251.833 rows=41840 loops=1)

-> Nested Loop (cost=4.81..3215.61 rows=41840 width=4) (actual time=5.366..70.316 rows=41840 loops=1)

-> Seq Scan on keyword k (cost=0.00..2626.12 rows=1 width=4) (actual time=0.556..10.051 rows=1 loops=1)

Filter: (keyword = 'character-name-in-title'::text)

Rows Removed by Filter: 134169

-> Bitmap Heap Scan on movie_keyword mk (cost=4.81..586.42 rows=307 width=8) (actual time=4.807..54.707 rows=41840 loops=1)

Recheck Cond: (keyword_id = k.id)

Heap Blocks: exact=11541

-> Bitmap Index Scan using keyword_id_movie_keyword (cost=0.00..4.74 rows=307 width=0) (actual time=3.269..3.269 rows=41840 loops=1)

Index Cond: (keyword_id = k.id)

-> Index Scan using title_pkey on title t (cost=0.43..0.47 rows=1 width=21) (actual time=0.004..0.004 rows=1 loops=41840)

Index Cond: (id = mk.movie_id)

-> Index Scan using movie_id_movie_companies on movie_companies mc (cost=0.43..0.54 rows=5 width=8) (actual time=0.003..0.004 rows=4 loops=41840)

Index Cond: (movie_id = t.id)

-> Hash (cost=5932.46..5932.46 rows=83831 width=4) (actual time=51.264..51.264 rows=84843 loops=1)

Buckets: 131072 Batches: 1 Memory Usage: 4007kB

-> Seq Scan on company_name cn (cost=0.00..5932.46 rows=83831 width=4) (actual time=0.010..37.079 rows=84843 loops=1)

Filter: ((country_code)::text = '[us]'::text)

Rows Removed by Filter: 150154

-> Index Scan using movie_id_cast_info on cast_info ci (cost=0.56..1.39 rows=38 width=8) (actual time=0.003..0.027 rows=41 loops=68316)

Index Cond: (movie_id = mk.movie_id)

-> Hash (cost=97287.05..97287.05 rows=4167405 width=4) (actual time=1186.950..1186.950 rows=4167491 loops=1)

Buckets: 524288 Batches: 16 Memory Usage: 13246kB

-> Seq Scan on name n (cost=0.00..97287.05 rows=4167405 width=4) (actual time=0.005..515.401 rows=4167491 loops=1)

-> Nested Loop (rows= 2999) (actual rows=3710592)

-> Nested Loop (rows=1253) (actual rows=2832555)

-> Index Scan using ... an (rows=2) (actual rows=1)

-> Hash Join (rows=3710592) (actual rows=3710592)

-> Seq Scan on ... an (rows=901343) (actual rows=901343)

-> Hash (rows=2832555) (actual rows=2832555)

Fixed

37Copyright©2018 NTT Corp. All Rights Reserved.

•Various hints are stored in the history table.

Plan history of Q16b

Times Queryid Plan_id Execution_time Total_diffs

0 … 671501202 19396.89 9670384

1 … 3725435884 24567.85 9504160

2 … 3151720077 35021.45 13242801

3 … 150735307 43750.84 17546662

4 … 1918733225 58548.67 23380179

5 … 1368113010 7145.19 0

Rows_hint Scan_hint Join_hint Lead_hint

… … … …

38Copyright©2018 NTT Corp. All Rights Reserved.

Hint Effect

INDEXSCAN(A)

…

Forces “index scan” on table “A”

NESTLOOP(A B)

…

Forces “nested loop” to the join consists of

the table “A” and “B”.

LEADING((A B) C) Forces “join order” as specified.

Firstly A join B, after that (A B) join C.

ROWS(A B #10) Corrects row number of a result of the join

consists of table “A” and “B”.

Brief explanation of pg_hint_plan’s hints

See: https://github.com/ossc-db/pg_hint_plan/blob/master/doc/hint_list.html

•Samples: scan method, join method, join order, and

row correction hint.
Scan

method

A, B and C are Table or Alias

Join

method

Join

order

Row

correction

39Copyright©2018 NTT Corp. All Rights Reserved.

•Rows Hints allow to override estimated rows on joins.

Rows hint of Q16b

Times Plan id Rows_hint Scan_hint Join_hint Lead_hint

… … … … … …

40Copyright©2018 NTT Corp. All Rights Reserved.

•We can check feedback information to check ROWS

hints.

Rows hint of Q16b

Times Rows_hint Total_diffs

0
ROWS(an ci cn k mc mk n t #3710592)
...

9670384

1 ... 9504160

2 ... 13242801

3 ... 17546662

4
ROWS(ci k mc mk n t #7796926)

...
23380179

5 Nothing!! 0

41Copyright©2018 NTT Corp. All Rights Reserved.

•pg_plan_advsr also generated and stored these hints.

Scan, Join and Leading hints of Q16b

Times Plan id Rows_hint Scan_hint Join_hint Lead_hint

… … … … … …

・Why these hints are stored?

- These hints can expresses a plan structure.

- By using these hints, you can reproduce the plan

at a certain point, anytime.

・Because

42Copyright©2018 NTT Corp. All Rights Reserved.

Scan hints of Q16b

•Several Index scans replaced with Seq scans.

times Scan_hint

0

INDEXSCAN(cn)

INDEXONLYSCAN(n)

INDEXSCAN(an)
...

1 ...

2 ...

3 ...

4

SEQSCAN(cn)

SEQSCAN(n)

SEQSCAN(an)
...

Scan_hint Join_hint Lead_hint

… … …

43Copyright©2018 NTT Corp. All Rights Reserved.

•Some Join methods were changed.

Join hints of Q16b

times Join_hint

0
NESTLOOP(an ci cn k mc mk n t)

NESTLOOP(ci cn k mc mk n t)
...

1 ...

2 ...

3 ...

4 ...

5
HASHJOIN(an ci cn k mc mk n t)

HASHJOIN(ci cn k mc mk n t)
...

Scan_hint Join_hint Lead_hint

… … …

44Copyright©2018 NTT Corp. All Rights Reserved.

•We can see table “an” moved to left-most side.

Leading hints of Q16b

times Lead_hint

0 LEADING((((((((k mk)t)mc)cn)ci)n)an))

1 ...

2 ...

3 ...

4 ...

5 LEADING((an ((((((k mk)t)mc)cn)ci)n)))

We can understand plan changes easily

by using Scan, Join and Leading hints.

Scan_hint Join_hint Lead_hint

… … …

45Copyright©2018 NTT Corp. All Rights Reserved.

• I rechecked the plan tuning effect by using baseline

and fastest plans.

• Operations

1. Add fastest hints (Scan, Join method and Join order) to fastest.sql.

2. Shutdown PG and clear OS cache

3. Prewarm whole tables

4. Run “psql –f baseline.sql and fastest.sql” three times.

• Result

Reverification of plan tuning effect

Types first second third

baseline.sql 252.93 233.57 233.87

fastest.sql 138.58 118.40 118.38

Reduced 48% on average, Good!!

(ms)

46Copyright©2018 NTT Corp. All Rights Reserved.

•Limitations

• Only correct join estimates

• This is a limitation of pg_hint_plan

• If the baserel can also be corrected, the convergence becomes faster

• Initplan and subplan are not supported

• Does not support concurrent execution

…

•Future work

• Remove above limitations

• Improve correcting error rows mechanism to reduce iterations

Limitations and Future Work

47Copyright©2018 NTT Corp. All Rights Reserved.

•POC phase

•Will share the extention on Github in this year.

Status of pg_plan_advsr

48Copyright©2018 NTT Corp. All Rights Reserved.

•pg_plan_advsr was able to improve the plan by reducing

row count estimation error.

•Tuning process may temporarily result in plan worse

than the initial plan, but this is tuning after all.

• In the measurement result, pg_plan_advsr was able to

reduce about 50% in execution time.

• It is possible to utilize execution information for auto

plan tuning.

Summary

49Copyright©2018 NTT Corp. All Rights Reserved.

Thoughts about the future PostgreSQL

Snow festival 2009 By hirotomo t under CC BY-SA 2.0

50Copyright©2018 NTT Corp. All Rights Reserved.

•Autonomous Features

• Upgrade

• Tuning

• Maintenance task

•Idea

Autonomous Database

Auto Plan advisor
Ablity to make

decisions by it self

Autonomous

Plan tuning

Rules

51Copyright©2018 NTT Corp. All Rights Reserved.

•Rough concept

•Building blocks

• Provide easy access to plan tree or explain analyze result: New hook

• Interfaces to adjust estimated rows on base/join relations: New API

• Avoid query cancellation on standby side: Improvement

• Store all plans like a pg_stat_statement: Improvement

Ideas for autonomous databases

using replicationed PostgreSQL

Act Std
Query

Send Query

Return

Efficient Plan

Auto Plan Tuning

If there are many tuning targets,

execute at multiple nodes

and shorten tuning time.

52Copyright©2018 NTT Corp. All Rights Reserved.

• In this talk, I have shared my experience of trying to get

more efficient plans for complex queries using my POC

extension, and also my thoughts about future

PostgreSQL.

• I hope that I was able to prove that PostgreSQL can be

improved to get more efficient plan using feedback loop.

• I believe the improvement is a key challenge to reach

future PostgreSQL.

Conclusion

53Copyright©2018 NTT Corp. All Rights Reserved.

Plan for better Plan

Thank you!

yamada.tatsuro@lab.ntt.co.jp
yamatattsu@gmail.com

"elephants beach walk" by Senorhorst Jahnsen is licensed under CC BY 2.0

54Copyright©2018 NTT Corp. All Rights Reserved.

Any Questions?

Q&A

Copyright Tatsuro Yamada

55Copyright©2018 NTT Corp. All Rights Reserved.

•Join order benchmark

•Other examples of verification effect

•Extensions from NTT OSS Center

•References

Appendix

56Copyright©2018 NTT Corp. All Rights Reserved.

•GitHub

• https://github.com/gregrahn/join-order-benchmark

Join order benchmark

57Copyright©2018 NTT Corp. All Rights Reserved.

•Query 29c and 31c ???

Top 5 highly effective query

9s -> 0.1s
8s -> 0.2s

<Examples>

58Copyright©2018 NTT Corp. All Rights Reserved.

Sample: Not converged query (Q32b)

32b.sql

•Oscillated…
It is changed Outer and Inner

table in Hash join.

<Examples>

59Copyright©2018 NTT Corp. All Rights Reserved.

•GitHub

• https://github.com/ossc-db

• pg_hint_plan

• pg_store_plans

• pg_dbms_stats

• pg_reorg

• pg_rman

• pg_bulkload

• dblink_plus

• Syncdb

• db_syntax_diff

•SourceForge

• https://sourceforge.net/projects/pgstatsinfo/

• pg_statsinfo

• pg_stats_reporter

Extensions from NTT OSS Center

60Copyright©2018 NTT Corp. All Rights Reserved.

• "How Good Are Query Optimizers, Really?“

by Viktor Leis, Andrey Gubichev, Atans Mirchev, Peter Boncz, Alfons Kemper,

Thomas Neumann

PVLDB Volume 9, No. 3, 2015

http://www.vldb.org/pvldb/vol9/p204-leis.pdf

• "Query optimization through the looking glass, and what we found

running the Join Order Benchmark”

by Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz,

Alfons Kemper, Thomas Neumann

https://db.in.tum.de/~leis/papers/lookingglass.pdf

• My session at PGCon 2016

• https://www.pgcon.org/2016/schedule/attachments/422_A%20Challenge%20of

%20Huge%20Billing%20System%20Migration_20160520.pdf

References

61Copyright©2018 NTT Corp. All Rights Reserved.

• Beyond EXPLAIN: Query Optimization From Theory To Code

• by YutoHayamizu, RyojiKawamichi

• https://www.pgcon.org/2016/schedule/attachments/433_PGCON2016_beyond_

explain.pdf

• AQO

• by Oleg Ivanov

• https://github.com/postgrespro/aqo

References

