
© 2013 EDB All rights reserved. 1

Parallel Query in PostgreSQL:
How not to (mis)use it?

Amit Kapila
(Senior DB Architect)

Rafia Sabih
(Software Engineer)

© 2016 EDB All rights reserved. 2

❏ Intra-query parallelism till PG v11
❏ Parallel-query flow in PG
❏ Supported parallel operators

❏ How to get most from parallel query
❏ Tuning parameters
❏ Dos and don’ts of parallel operators

❏ Comparison with contemporary database engines for
“parallel infrastructure”

❏ Take away

Overview

© 2016 EDB All rights reserved. 3

Parallel Query flow: Scans and Aggregates

Master

Worker Worker Worker

1. Master spawns the required number of workers and
also works as one of the workers.

2. Each worker scans part of the relation and together
they scan the complete table

3. The nodes below are the parallel ones and above it
are the serial ones

© 2016 EDB All rights reserved. 4

Parallel Query flow: Scans and Aggregates

Table

Worker Worker Worker Worker

1. A number of workers are spawned once the
decision to use parallel operator is made

2. The leader backend that spawns the workers runs
the gather node which coordinates the task

© 2016 EDB All rights reserved. 5

Parallel Query flow: Scans and Aggregates
1. Each of the worker performs the scan, apply the filter, etc. on the tuples of

pages received by that worker
2. When completed it transfers the resultant tuples to the master
3. In case of aggregates, workers can only perform the aggregate on the tuples

they received, hence master performs the final aggregate on the resultant
tuples

Master

Worker

Partial
aggregate

Parallel
Scan

Worker

Partial
aggregate

Parallel
Scan

Worker

Partial
aggregate

Parallel
Scan

Finalise
aggregate

Gather-m
erge

© 2016 EDB All rights reserved. 6

Parallel Query flow: Scans and Aggregates

Master

Worker

Partial
aggregate

Parallel
Scan on

T1

1. In case of joins, atleast one of the table is scanned by a set of parallel workers
2. Each worker then scans the inner table for the join
3. Resultant tuples are then passed to master

Scan on
T2

Parallel
join

Worker

Partial
aggregate

Parallel
Scan on

T1

Scan on
T2

Parallel
join

Worker

Partial
aggregate

Parallel
Scan on

T1

 Scan
on T2

Parallel
join

Finalise
aggregate

Gather-m
erge

© 2016 EDB All rights reserved. 7

❏ Parallel executor support
❏ Pass the plan state tree for execution to workers
❏ Execute a plan by a set of workers

❏ Parallel aware executor nodes
❏ Different behaviours when run in parallel and

otherwise

❏ Gather (Merge)
❏ Collect results across all workers and merge them

into a single result stream
❏ Collect all the instrumentation information across

all workers and show the aggregated information

Intra-query parallel support

© 2016 EDB All rights reserved. 8

Parallel operators in PostgreSQL
❏ Parallel access methods

❏ Parallel seq scan - PG v9.6
❏ Parallel index, index-only scans, bitmap-heap scans -

PG v10

❏ Parallel joins
❏ NestedLoop and Hash joins - PG v9.6
❏ Merge-join - PG v10, improved parallel hash join - PG

v11

❏ Other parallel operators
❏ Parallel aggregate - PG v9.6
❏ Gather-merge, sub/init plans pushed to workers - PG

v10, parallel append - PG v11
❏ Parallel create index - PG v11

© 2016 EDB All rights reserved. 9

❏ Experimental setup
❏ RAM = 512 GB
❏ Number of cores = 32

❏ Parameter settings
❏ Work_mem = 64 MB
❏ Shared_buffers = 8 GB
❏ Effective_cache_size = 10 GB
❏ Random_page_cost = seq_page_cost = 0.1
❏ Max_parallel_workers_per_gather = 4

❏ Database setup
❏ Scale factor = 300
❏ Additional indexes l_shipmode, l_shipdate,

o_orderdate, o_comment

Performance evaluation of PG v10 on TPC-H

© 2016 EDB All rights reserved. 10

Performance evaluation of PG v10 on TPC-H

Results on scale factor 300

© 2016 EDB All rights reserved. 11

❏ Parallel query specific parameters
❏ max_parallel_workers_per_gather
❏ parallel_tuple_cost
❏ parallel_setup_cost
❏ min_parallel_table_scan_size
❏ min_parallel_index_scan_size
❏ parallel_leader_participation
❏ parallel_workers

❏ Other parameters
❏ work_mem
❏ effective_cache_size
❏ random_page_cost

Tuning parallelism

© 2016 EDB All rights reserved. 12

❏ Max_parallel_workers_per_gather
❏ Number of workers per node for a parallel operator
❏ Recommended value 1 to 4
❏ The ideal value of this parameter is determined by

number of cores in the system and the work required
at a node
❏ E.g. If the number of cores is 8 but the work required at node is enough for 2 workers

only then increasing this parameter will not help
❏ Similarly, if the number of cores is 2 and we increased this parameter to 10, then it’s

likely to cause degradation in performance

Tuning parallelism

© 2016 EDB All rights reserved. 13

❏ parallel_tuple_cost
❏ planner's estimate of the cost of transferring one

tuple from a parallel worker process to another
process

❏ parallel_setup_cost
❏ planner's estimate for launching parallel workers and

initializing dynamic shared memory

❏ We can lower the values of these parameters to
diagnose the performance of parallel operators

Tuning parallelism

© 2016 EDB All rights reserved. 14

❏ min_parallel_table_scan_size
❏ Minimum size of relations to be considered for

parallel sequence scan
❏ The default value of this parameter is 8MB
❏ If the database mostly has large tables then it is

better to increase this parameter
❏ For diagnostic purposes we can decrease it to lower

values to analyse the query plans, etc.

❏ min_parallel_index_scan_size
❏ the minimum size of index to be considered for

parallel scan
❏ The default value is 512kB

Tuning parallelism

© 2016 EDB All rights reserved. 15

❏ parallel_leader_participation
❏ Manage the involvement of the leader process
❏ Queries which require to maintain the order of tuples

from workers, might need the leader to work on that
more than scanning a part of leader

❏ When too many workers are there it might be good to
keep leader free for the management of workers

❏ parallel_workers
❏ Alter table <table_name> set (parallel_workers =<n>)
❏ Control the degree of parallelism for each table, if

required

Tuning parallelism

© 2016 EDB All rights reserved. 16

❏ work_mem
❏ Amount of memory given to per worker per node

❏ effective_cache_size
❏ If random_page_cost is low then this parameter should

be enough to accommodate the secondary indexes

❏ random_page_cost
❏ Estimated cost of accessing a random page in disk

Tuning parallelism

© 2016 EDB All rights reserved. 17

❏ Functions are parallel unsafe
❏ If they modify any database state
❏ If they make changes to transaction(s)

❏ Using subtransaction(s)
❏ Accessing sequences
❏ Make persistent changes to settings, e.g. setval

❏ Functions are parallel restricted
❏ Access temporary tables, client connection state,

cursors, prepared statements, or miscellaneous
backend-local state which the system cannot synchronize
in parallel mode (e.g. setseed)

Tuning parallelism: “Function”ing in parallel query!

© 2016 EDB All rights reserved. 18

When not to expect
performance improvements

from...

© 2016 EDB All rights reserved. 19

❏ Too small table
❏ Lesser than the min_parallel_table_scan_size

❏ Too less tuples filtered out
❏ Additional costs

❏ dividing the work among workers
❏ collection of tuples from workers

❏ If the number of workers is not high enough, the
additional cost of parallelism could be more than the
non-parallel scan

Parallel Sequential Scan

© 2016 EDB All rights reserved. 20

❏ Size of index is too small
❏ Number of leaf pages in the index range is small
❏ All the tuples qualify the index filter

❏ Index is non-BTree
❏ Currently not supported

Parallel Index Scan

© 2016 EDB All rights reserved. 21

❏ Size of bitmap is small
❏ Bitmap index scan is costlier than bitmap heap scan

❏ The bitmap index scan is not supported in parallel,
only bitmap-heap scan can be divided among workers

❏ Most of the tuples satisfy the qual
❏ Though the size of bitmap is big enough, the benefit

of parallelism cannot be achieved if most of the
tuples are sent to the gather

Parallel Bitmap Heap Scan

© 2016 EDB All rights reserved. 22

❏ Inner relation is not small enough
❏ Ideally, the size of inner relation should be LEQ

work_mem/total number of workers, otherwise the amount
of memory used might be unexpected

❏ Every worker will keep a copy of the inner relation
❏ If the copy does not fit in memory it will be send to

the disk which will increase the I/O cost

❏ This issue is also true for parallel hash join without shared
hash

Parallel Merge Join

© 2016 EDB All rights reserved. 23

❏ Number of groups is too high
❏ The final aggregate is to be performed at the gather

node
❏ So, it is almost same as gather is performing the

aggregate alone

❏ Early aggregation is not possible
❏ E.g. average of an attribute

❏ Aggregate functions is parallel unsafe or restricted

Parallel Aggregates

© 2016 EDB All rights reserved. 24

❏ Workers contain mutually exclusive tuple ranges
❏ Gather-merge can only accept rows from one worker at a

time to maintain the order of tuples
❏ The remaining workers need to halt till the shared

queue is empty to complete their further processing
❏ The processing is similar to as if workers are giving

the tuples in serial fashion

Gather-merge

© 2016 EDB All rights reserved. 25

More workers may not mean
better performance

© 2016 EDB All rights reserved. 26

Amdahl’s law

© 2016 EDB All rights reserved. 27

❏ More workers may not translate to better performance
❏ If the amount of work is limited to be distributed

among n workers, the n+k workers are not going to help
❏ Don’t believe us, see the results for yourself

Too many cooks spoil the broth!

TPC-H
● Scale factor = 50
● Additional indexes on l_shipmode, l_shipdate,

o_orderdate, and o_comment

Server settings
● random_page_cost = seq_page_cost = 0.1
● effective_cache_size = 10GB
● shared_buffers = 8GB
● work_mem = 1GB

© 2016 EDB All rights reserved. 28

Parallel-query architecture
PostgreSQL

Vs
 Other engines

© 2016 EDB All rights reserved. 29

1. Exchange operators
❏ Gather, worker

2. Each operator needs to have a parallel
version as a new operator
❏ Parallel scans, joins,

aggregate
3. Tuples can only flow between workers and

gather
❏ A new node called

gather-merge is used to
maintain order of rows

❏ Final aggregation can be
done by gather only

4. Well-suited for multi-process architecture of
PostgreSQL

Parallel infrastructure: PG vs other engines
1. Exchange operators

❏ Distribute, gather, and
repartition

2. Exchange operators can be placed over any
operator
❏ Any scan can be parallelised

by placing distribute and
gather operators over it

❏ Aggregate can be parallelised
by repartition and gather
operators

3. Tuples can be routed among the streams
❏ To maintain order of rows
❏ For efficient aggregation

4. Advocated for any multi-threaded architecture
based models

PostgreSQL Other DB engines

© 2016 EDB All rights reserved. 30

Parallel scan: PG vs other engines

Table

Page supplier

Scan Scan Scan

Aggregate
stream

Aggregate
stream

Aggregate
stream

Gather streams

Stream aggregate

PostgreSQL

Other DB enginesMaster

Worker

Partial
aggregate

Parallel
Scan

Worker

Partial
aggregate

Parallel
Scan

Worker

Partial
aggregate

Parallel
Scan

Finalise
aggregate

Gather-
merge

© 2016 EDB All rights reserved. 31

1. All the workers work together to create the
complete hash table
❏ The total work of creating

the hash-table is divided
among the workers

2. Once the hash is prepared, each worker can
probe it to perform the join of a tuple it
received
❏ This probing is lock or

contention free
❏ Total tuples of outer

relation are divided among
workers hence dividing the
total work

3. A smart move to overcome tuple routing
mechanism

Case-study: Parallel Hash join
1. Each stream performs a small hash join which

is later combined for the final result
❏ Each stream gets a well

defined range of join
❏ Any stream can route a tuple

if it receives some that
belong to the range of other
stream

❏ Total work of hash-join is
divided among the streams

PostgreSQL Other DB engines

© 2016 EDB All rights reserved. 32

❏ In PostgreSQL, parallel-query architecture allows less communication
among worker nodes, but more work per-node. This is more suited to
process based architecture where inter-process communication cost is
higher

❏ The other architecture described has more communication among workers,
but less work per node which could be more-suited to thread-based
architecture where there is almost no inter-process communication cost

❏ This conclusion is just based on our understanding of the systems

Parallel query architectures: at a glance

© 2016 EDB All rights reserved. 33

❏ Parallel bitmap index scan
❏ Parallel sort

❏ Can improve performance for lengthy sorts
❏ Costly order by is common in OLAP environments

❏ Parallel materialise node
❏ Like shared hash, we can have one shared copy of inner

table in parallel for efficient (merge/nested-loop)
joins

❏ Improvements in parallel aggregate
❏ Perform final aggregate in shared memory
❏ This could remove the bottleneck of finalize aggregate

❏ Improvements in query optimizer
❏ Improve the costing for parallel operators

Scope of enhancements in parallel query

© 2016 EDB All rights reserved. 34

❏ Remarkable performance improvements with parallel operators on TPC-H
❏ Till v9.6 out of 22 queries of TPC-H, performance improved for 15

queries, in which 3 queries are at least 4 times faster and 11
queries are 2 times faster

❏ Further in v10, around 10 of 22 TPC-H queries show significant
improvement in performance, in which around 4 queries show more
than 2x improvement

❏ Tuning parameters for parallelism
❏ Parallel-query specific parameters
❏ Other server-side parameters

❏ Parallel operators fail to improve performance when…
❏ Too many workers may not always improve query performance

❏ Comparison with other database engines for parallel query architecture

Conclusion

© 2016 EDB All rights reserved. 35

❏ Robert Haas
❏ Amit Kapila
❏ Thomas Munro
❏ Dilip Kumar
❏ Peter Geoghegan
❏ Andres Freund
❏ David Rowley
❏ Rushabh Lathia
❏ Rahila Syed
❏ Amit Khandekar
❏ Kuntal Ghosh
❏ Rafia Sabih

Special thanks to Tom Lane for helping in the fixes of many bugs

People who contributed

36

Output: Thank You
Gather
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Index Scan on Common_phrases
 Index Cond: (value = ‘Thank You’)
 Filter: Language = ‘English’

Slide credits:
[1] https://www.pgcon.org/2016/schedule/events/913.en.html
[2] https://www.postgresql.eu/events/schedule/pgconfeu2016/session/1360-parallel-query-in-postgresql/
[3] http://pgconf.in/schedule/query-parallelism-in-postgresql-expectations-and-opportunities/

https://www.pgcon.org/2016/schedule/events/913.en.html
https://www.postgresql.eu/events/schedule/pgconfeu2016/session/1360-parallel-query-in-postgresql/

