
Using Prometheus and Grafana to build a Postgres Dashboard

Gregory Stark

October 25, 2018

Gregory Stark Monitoring Postgres

What is Monitoring?

Gregory Stark Monitoring Postgres

Old School

Server

Nagios Monitor

Gregory Stark Monitoring Postgres

New School

We want to alert on global properties such as
The fraction of the fleet currently operating well
The average response time across the fleet
The consistency of the data across the fleet

We want to alert based on historical data
Average rates over time period
Compare current data with 24h ago or 7d ago

We want to alert on comparisons between services
Ratio of rates of transactions in database to application requests
Are there any database servers for which S3 does not contain a recent backup

Gregory Stark Monitoring Postgres

The Tools

Prometheus
Database specifically designed for handling time series. It performs
recorded queries regularly to synthesize new time series and to generate
alerts.

Alertmanager
Part of Prometheus project. Handles generating notifications for alerts.

node exporter
Agent for system statsitics. For more agents see:
https://prometheus.io/docs/instrumenting/exporters/

postgres exporter
Agent that exports statistics from pg stat * views

mtail
Useful to fill gaps where Postgres doesn’t provide a statistics views to
expose them. e.g. log min duration, log lock waits

Grafana
WYSIWYG dashboard software.

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

pg stat activity pg stat archiver
pg stat replication pg stat bgwriter
pg stat wal receiver pg stat database
pg stat subscription pg stat database conflicts
pg stat ssl
pg stat progress vacuum

pg stat all tables pg statio all tables
pg stat all indexes pg statio all indexes
pg stat user functions pg statio all sequences

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

PG Statistics Views
pg stat *

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

PG Statistics Views
pg stat *Logs

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

PG Statistics Views
pg stat *Logs Other Tables

pg stat statements

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

PG Statistics Views
pg stat *Logs Other Tables

pg stat statements

postgres exporter
queries.yaml

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

PG Statistics Views
pg stat *Logs Other Tables

pg stat statements

postgres exporter
queries.yaml

mtail

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

PG Statistics Views
pg stat *Logs Other Tables

pg stat statements

postgres exporter
queries.yaml

mtail

Prometheus

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

PG Statistics Views
pg stat *Logs Other Tables

pg stat statements

postgres exporter
queries.yaml

mtail

Prometheus

Operating
System

node exporter

Application
Metrics

Gregory Stark Monitoring Postgres

The Data Flow

PostgreSQL

PG Statistics Views
pg stat *Logs Other Tables

pg stat statements

postgres exporter
queries.yaml

mtail

Prometheus

Operating
System

node exporter

Application
Metrics

Grafana
Email IRC
Pagerduty Slack

Gregory Stark Monitoring Postgres

USE

The USE method uses three key metrics for each component of a complex system:
Utilization
Saturation
Errors

It was published in ACMQ as Thinking Methodically about Performance (2012):
https://queue.acm.org/detail.cfm?id=2413037

Further discussion:
http://www.brendangregg.com/usemethod.html

Presented at FISL13:
http://dtrace.org/blogs/brendan/2012/09/21/fisl13-the-use-method/

Gregory Stark Monitoring Postgres

RED

The RED model uses latency (duration) instead of utilization:

Rate
Errors
Duration

From:
https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-
architecture/

See also:
https://www.vividcortex.com/blog/monitoring-and-observability-with-use-and-red

Gregory Stark Monitoring Postgres

Google’s SRE Golden Signals

SRE Golden Signals are very similar:
Latency
Traffic
Errors
Saturation

Orginally published in Site Reliability Book:

Also see discussion at:
https://medium.com/devopslinks/how-to-monitor-the-sre-golden-signals-
1391cadc7524

Gregory Stark Monitoring Postgres

PromQL

Gregory Stark Monitoring Postgres

PromQL

Gregory Stark Monitoring Postgres

PromQL

Gregory Stark Monitoring Postgres

Alerts - Rate

groups:
- name: postgresql.rules

rules:
- alert: PostgreSQL_CommitRateTooLow

expr: |
rate(pg_stat_database_xact_commit{datname="gitlabhq_production",

environment="prd"}[1m]) < 1000
for: 2m
labels:

severity: warn
channel: database

annotations:
description: |

Commits/s on {{$labels.instance}} database {{$labels.datname}}
is {{$value | printf "%.0f" }} which is implausibly low.
Perhaps the application is unable to connect

runbook: troubleshooting/postgresql.md#availability
title: 'Postgres seems to be processing very few transactions'

Gregory Stark Monitoring Postgres

Alerts - Errors

groups:
- name: postgresql.rules

rules:
- alert: PostgreSQL_RollbackRateTooHigh

expr: |
rate(pg_stat_database_xact_rollback{datname="gitlabhq_production"}[5m])

/ ON(instance, datname)
rate(pg_stat_database_xact_commit{datname="gitlabhq_production"}[5m])

> 0.02
for: 5m
labels:

severity: warn
channel: database

annotations:
description: |

Ratio of transactions being aborted compared to committed is
{{$value | printf "%.2f" }} on {{$labels.instance}}

runbook: troubleshooting/postgresql.md#errors
title: 'Postgres transaction rollback rate is high'

Gregory Stark Monitoring Postgres

Alerts - Saturation

groups:
- name: postgresql.rules

rules:
- alert: PostgreSQL_ConnectionsTooHigh

expr: |
sum(pg_stat_activity_count) BY (environment, instance)

> ON(instance)
pg_settings_max_connections * 0.75

for: 10m
labels:

severity: warn
channel: database

annotations:
runbook: troubleshooting/postgresql.md#connections
title: |

Postgres has {{$value}} connections on {{$labels.instance}}
which is close to the maximum

Gregory Stark Monitoring Postgres

Alerts - more Errors

Count of specific types of errors -- notably statement timeouts
counter postgresql_logs_total by severity
counter postgresql_errors_total by type

/ˆ[0-9_:.-]* [a-z0-9-]* postgresql: (?P<date>\d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d [A-Z]{3}) \[[0-9]*\]:
\[[0-9]*-1\] (?P<severity>DEBUG[1-5]|INFO|NOTICE|WARNING|ERROR|LOG|FATAL|PANIC): / {

postgresql_logs_total[$severity]++

/ERROR: (?P<message>.*)$/ {
/canceling statement due to statement timeout/ {

postgresql_errors_total["statement_timeout"]++
}
/canceling autovacuum task/ {

postgresql_errors_total["canceled_autovacuum"]++
}
/deadlock detected/ {

postgresql_errors_total["deadlock_detected"]++
}
/duplicate key value violates unique constraint/ {

postgresql_errors_total["duplicate_key"]++
}
otherwise {

postgresql_errors_total["other"]++
}

}
}

Gregory Stark Monitoring Postgres

Alerts

groups:
- name: postgresql.rules

rules:
- alert: PostgreSQL_StatementTimeout_Errors

expr: |
rate(postgresql_errors_total{type="statement_timeout"}[1m]) > 0.5

for: 5m
labels:

severity: warn
channel: database

annotations:
descrition: |

Database {{$labels.instance}} is logging
{{ $value | printf "%.1f" }} statement timeouts per second

runbook: troubleshooting/postgresql.md#errors
title: 'Postgres transactions showing high rate of statement timeouts'

Gregory Stark Monitoring Postgres

Alerts - Exposing hidden problems

pg_replication:
query: |

SELECT EXTRACT(epoch FROM (
now() - pg_last_xact_replay_timestamp()

))::int AS lag,
CASE WHEN pg_is_in_recovery() THEN 1 ELSE 0 END AS is_replica

metrics:
- lag:

usage: "GAUGE"
description: "Replication lag behind primary in seconds"

- is_replica:
usage: "GAUGE"
description: "Indicates if this host is a replica"

Gregory Stark Monitoring Postgres

Alerts - Exposing hidden problems

groups:
- name: postgresql.rules

rules:
- alert: PostgreSQL_ReplicationLagTooLarge

expr: |
(pg_replication_lag > 120)

AND ON(instance)
(pg_replication_is_replica == 1)

annotations:
description: |

Replication lag on server {{$labels.instance}} is currently
{{$value | humanizeDuration }}

runbook: troubleshooting/postgres.md#replication-is-lagging-or-has-stopped
title: 'Postgres Replication lag is over 2 minutes'

Gregory Stark Monitoring Postgres

Alerts - Exposing hidden problems

pg_replication_slots:
query: |

SELECT slot_name, slot_type,
case when active then 1.0 else 0.0 end AS active,
age(xmin) AS xmin_age,
age(catalog_xmin) AS catalog_xmin_age,

FROM pg_replication_slots
metrics:

- slot_name:
usage: "LABEL"
description: "Slot Name"

- slot_type:
usage: "LABEL"
description: "Slot Type"

- active:
usage: "GAUGE"
description: "Boolean flag indicating whether this slot has a consumer streaming from it"

- xmin_age:
usage: "GAUGE"
description: "Age of oldest transaction that cannot be vacuumed due to this replica"

- catalog_xmin_age:
usage: "GAUGE"
description: "Age of oldest transaction that cannot be vacuumed from catalogs due to this replica (used by logical replication)"

Gregory Stark Monitoring Postgres

Alerts - Exposing hidden problems

groups:
- name: postgresql.rules

rules:
- alert: PostgreSQL_UnusedReplicationSlot

expr: 'pg_replication_slots_active == 0'
for: 30m
labels:

severity: warn
channel: database

annotations:
description: |

Unused {{$labels.slot_type}} slot "{{$labels.slot_name}}"
on {{$labels.instance}}

Gregory Stark Monitoring Postgres

Alerts - Exposing hidden problems

- alert: PostgreSQL_SplitBrain
expr: 'count(pg_replication_is_replica == 0) BY (environment) != 1'
annotations:

title: |
Split Brain: more than one postgres databases in environment
{{$labels.environment}} in read-write (primary) mode

- alert: PostgreSQL_SplitBrain_Replicas
expr: |

count(
count(pg_stat_wal_receiver_status >= 0) BY (environment, upstream_host)

) BY (environment) > 1
annotations:

title: |
Split Brain: replicas in environment {{$labels.environment}}
have different upstream databases configured

Gregory Stark Monitoring Postgres

Alerts - Miscellaneous

- alert: PostgreSQL_FleetSizeChange
expr: 'postgres:databases != postgres:databases OFFSET 2m'
annotations:

description: 'There are now {{$value}} databases in "{{$labels.environment}}"'
title: 'Number of PostgreSQL Databases in {{$labels.environment}} has changed'

- alert: PostgreSQL_RoleChange
expr: 'pg_replication_is_replica and changes(pg_replication_is_replica[1m]) > 0'

title: 'Postgres Database replica promotion occurred in "{{$labels.environment}}"'

- alert: PostgreSQL_ConfigurationChange
expr: |

{__name__=˜"pg_settings_.*"} !=
ON(__name__, instance)
{__name__=˜"pg_settings_.*",__name__!="pg_settings_transaction_read_only"}
OFFSET 10m

Gregory Stark Monitoring Postgres

The GUI Dashboard

Gregory Stark Monitoring Postgres

The GUI Dashboard

Gregory Stark Monitoring Postgres

The GUI Dashboard

Gregory Stark Monitoring Postgres

pg stat statements

pg_stat_statements:
query: |

SELECT
pg_get_userbyid(userid) as user,
pg_database.datname,
pg_stat_statements.queryid,
pg_stat_statements.calls,
pg_stat_statements.total_time as time_milliseconds,
pg_stat_statements.rows,
pg_stat_statements.shared_blks_hit,
pg_stat_statements.shared_blks_read,
pg_stat_statements.shared_blks_dirtied,
pg_stat_statements.shared_blks_written,
pg_stat_statements.local_blks_hit,
pg_stat_statements.local_blks_read,
pg_stat_statements.local_blks_dirtied,
pg_stat_statements.local_blks_written,
pg_stat_statements.temp_blks_read,
pg_stat_statements.temp_blks_written,
pg_stat_statements.blk_read_time,
pg_stat_statements.blk_write_time
FROM pg_stat_statements
JOIN pg_database

ON pg_database.oid = pg_stat_statements.dbid

Gregory Stark Monitoring Postgres

pg stat statements

metrics:
- user:

usage: "LABEL"
description: "The user who executed the statement"

- datname:
usage: "LABEL"
description: "The database in which the statement was executed"

- queryid:
usage: "LABEL"
description: "Internal hash code, computed from the statement's parse tree"

- calls:
usage: "COUNTER"
description: "Number of times executed"

- time_milliseconds:
usage: "COUNTER"
description: "Total time spent in the statement, in milliseconds"

- rows:
usage: "COUNTER"
description: "Total number of rows retrieved or affected by the statement"

- shared_blks_hit:
usage: "COUNTER"
description: "Total number of shared block cache hits by the statement"

- shared_blks_read:
usage: "COUNTER"
description: "Total number of shared blocks read by the statement"

- shared_blks_dirtied:
usage: "COUNTER"
description: "Total number of shared blocks dirtied by the statement"

- shared_blks_written:
usage: "COUNTER"
description: "Total number of shared blocks written by the statement"

- local_blks_hit:
usage: "COUNTER"
description: "Total number of local block cache hits by the statement"

- local_blks_read:
usage: "COUNTER"
description: "Total number of local blocks read by the statement"

- local_blks_dirtied:
usage: "COUNTER"
description: "Total number of local blocks dirtied by the statement"

- local_blks_written:
usage: "COUNTER"
description: "Total number of local blocks written by the statement"

- temp_blks_read:
usage: "COUNTER"
description: "Total number of temp blocks read by the statement"

- temp_blks_written:
usage: "COUNTER"
description: "Total number of temp blocks written by the statement"

- blk_read_time:
usage: "COUNTER"
description: "Total time the statement spent reading blocks, in milliseconds"

- blk_write_time:
usage: "COUNTER"
description: "Total time the statement spent writing blocks, in milliseconds"

Gregory Stark Monitoring Postgres

pg stat statements

This has some issues with Cardinality....
15 metrics
for each of 5000 queryids (or more)
for each database
every 15s

This can quickly become performance issue for Prometheus.

Gregory Stark Monitoring Postgres

pg stat statements

Gregory Stark Monitoring Postgres

pg stat statements

Gregory Stark Monitoring Postgres

pg stat statements

Gregory Stark Monitoring Postgres

pg stat statements

Gregory Stark Monitoring Postgres

pg stat statements

Gregory Stark Monitoring Postgres

Future things to address

Missing stats in postgres exporter
Queries.yaml requires a good understanding of Postgres *and* Prometheus to
write. It also makes rules and dashboards non-portable which is a major downside.
It’s considered an “anti-pattern” in Prometheus exporter world.

Missing data in pg stats *: errors, lock timing, slow queries
If you have more please tell me, I’ll be working on adding these in the future.

Saturation is basically impossible to measure in Postgres
pg stat activity does not really represent saturation very well when
applications keep persistent connections and use pooling of any form. If you filter
on state=active it’s useful but still very coarse and incomplete representation.
There’s a pgbouncer exporter as well and you can add instrumentation to your
application to address this. But it would be good to identify standard ways of
measuring Postgres saturation.

Gregory Stark Monitoring Postgres

Future things to address

postgres exporter should be eliminated entirely
It would be much preferable to have Postgres speak common monitoring protocols
directly. That would make the statistics more consistent, reliable, and easier to
deploy.

Distributed Tracing
This is different from but complementary to monitoring and is a major gap that
would help expose the connections between database metrics and application
metrics.

Gregory Stark Monitoring Postgres

More information

This presentation is online at:
https://_stark.gitlab.io/monitoring-postgres-pgconf.eu-2018/monitoring.pdf

Gitlab Project for presentation at:
https://gitlab.com/_stark/monitoring-postgres-pgconf.eu-2018

Source code for presentation at:
https://gitlab.com/_stark/monitoring-postgres-pgconf.eu-2018.git

Author contact address:
stark@mit.edu

Gregory Stark Monitoring Postgres

https://_stark.gitlab.io/monitoring-postgres-pgconf.eu-2018/monitoring.pdf
https://gitlab.com/_stark/monitoring-postgres-pgconf.eu-2018
https://gitlab.com/_stark/monitoring-postgres-pgconf.eu-2018.git
stark@mit.edu

