An Oracle DBA approach to
Troubleshoot PostgreSQL

application performance

Franck Pachot

& Whoam I?

Franck Pachot
Database Engineer at CERN

« Twitter @FranckPachot
« Medium: https://medium.com/@FranckPachot

. ACE Director

ﬁiklab\@ ORACLE 4 |ORACLE

Certified Master

e

https://twitter.com/FranckPachot
https://medium.com/@FranckPachot

Agenda

Performance troubleshooting tools at 3 levels:
« Platform tuning: pgio
« Query tuning: pg_hint_plan
« Session tuning: pgSentinel ASH

A different approach?

Not better, not worse, but a different approach

Oracle DBAs working on complex system for decades:
- take time to choose and setup the platform
- want to have full control on any single component
- like facts (times events) and not guesses (ratios)

and some of them have moved to other databases, like PostgreSQL

&)

NS

Benchmark your platform

pgbench addresses the 3 layers

but:
« is it similar to your application?
* Is the time spent on
- parsing the queries
- processing the result
- reading memory, disk,...
- or just in roundtrips and context switches?

. . *Data model
Application .5 qries
*Optimizer
Database . Execution
*CPU, Memory
' System «Storage (I/0)

*Data model

Application 5 cies
* Optimizer
Database *Execution

System

«CPU, Memory
«Storage (I/0)

pgio

When you want to benchmark the system Application g

*Queries

component, yOl.J don't Want pgbench doing Database -OPUmEeT
user calls, parsing queries, ... System (CPY: Memor

pgio focuses on page (block) access: You chose by sizing the

- from shared buffers < memory areas

« from filesystemM and the work unit

- from storage

:
pgio (Demo) e

RUN_TIME=60

NUM_SCHEMAS=2

NUM_THREADS=2
WORK_UNIT=255

UPDATE_WORK_UNIT=8

. SCALE=100M
$ tar -xvC ~ -f /tmp/pgio-0.9.tar DBNAME=pgio
v sh ./setup.sh CONNECT _STRING=pgio
$ sh ./runit.sh | grep -E "~ |>[0-9]*<" CREATE_BASE_TABLE=TRUE

Date: Wed May 4 11:02:04 GMT 2019
Database connect string: "pgio".
Shared buffers: 500MB.
Testing 2 schemas with 2 thread(s) accessing 100M (12800 blocks) of each schema.
Running iostat, vmstat and mpstat on current host--in background.
Launching sessions. 2 schema(s) will be accessed by 2 thread(s) each.
pg stat database stats:
datname| blks hit| blks read|tup returned|tup fetched|tup updated
BEFORE: pgio | 1411801403 | 241612 | 1400140946 | 1395388076 | 156
AFTER: pgio | 1591129323 | 269231 | 1577445952 | 1572691980 | 156
DBNAME: pgio. 2 schemas, 2 threads(each). Run time: 60 seconds. RIOPS >460< CACHE HITS/s >2988798<

ngIo
When?

« Compare platforms for their performance on database work:
- LIO (CPU, L1/L2 caches, Memory, Huge Pages, NUMA,...)
- filesystem cache (xfs, ext4, zfs...)
- PIO (SSD, NVMe, Direct 1/0,...)

« Gather fully reproducible measures
- when installing a new system
- Compare when you encounter an issue to know if it's system related
- Give some facts to your cloud provider about performance degradation

pgio

IS not an alternative to pgbench

pgbench tests the database for the application:

- e.g. effect of zHeap vs. Heap, vacuum frequency,
compare two versions, planner parameters...

9 Kevin @kevinclosson - 1 févr.

pgio tests the platform
for the database

Feel free to quote me:

"SLOB and pgio (the SLOB port to @PostgreSQL) use the database to test
the platform. TPCC uses the platform to test the database."

*Data model

Application .5 cies
*Optimizer
Database . Execution

System

*CPU, Memory
«Storage (I/0)

pg_hint_plan

This is not a discussion about
using hints in the application

But for the developer, or the DBA,
 you need to understand how the database works,
 and the query planner choices.

You need to test (explain) the alternatives.

*Data model

Application .5 cies
*Optimizer
Database Execution
*CPU, Memory
SyStem «Storage (I/0)

g_hint_plan (Demo)

$ yum install -y /tmp/pg hint planll.rpm

osdn.net/projects/pghintp
pg_hint_plan 1.1

pg_hint plan
demo=# load ' hint plan’;
Pg— —P ! Name 1. Name
2. Synopsis
. pg_hint_plan -- controls execution 3. Description
demo—# /*+ Indexonlyscan (demOl) */ plan with hinting phrases in 4. Installation
demo-# explain (analyze,verbose,costs,buffers) comment of special form. 5. Uninstallation
. 6. Hint descriptions
demo-# select sum(n) from demol ; Synopsis 7. Hint syntax
8. Restrictions
PostgreSQL uses cost based . .
= N i~ 9. Technics to hint on disired targets
— * * optimizer, which utilizes data T
demo=# /*+ Seqscan (demol) / statistics, not static rules. The 12 7:5""‘3? of Tllnts't .
— 3 planner (optimizer) esitimates costs - functional limitations
demo-# explain (analyze,verbose,costs,buffers) P ench popible exeoution nctor | 12, Requirem
demo-# select sum(n) from demol ; a SQL statement then the execution | 13. See Also
plan with the lowest cost finally be 14. Appendix A. Hints list
executed. The planner does its best

to select the best best execution

demo=# /*+ Rows (people country people language *2) */
demo-# explain (analyze,verbose,costs,buffers)
demo-# select count (*) from people country

demo-#
demo-#
demo-#

join people language using (id)
where ctry='UK' and lang='EN'

’

pg_hint_plan

. . - Data model
Application .5 cies
*Optimizer
Database . Execution
*CPU, Memory
SyStem «Storage (I/0)

What-If
« The access path or join method were different?
- The estimated cardinalities were different?

Workarounds

« A bad join method (like nested loop on million rows) can take hours

*Data model

Application .5 qries
* Optimizer
Database *Execution

System

*CPU, Memory
«Storage (I/0)

\

pgSentinel

Active Session History

*Data model

- Sampling of session activity

« Get all information (client/query/wait event...)

Application .5 qries
* Optimizer
Database *Execution
*CPU, Memory
System «Storage (I/0)

- Store the the history in a cyclical buffer (

Imagine TOP with all info about the process running:
- the client info (host, port)
- the database info (query)
- the system info (wait event)

Imagine a Data Mart on your database activity

=

NS

gSentinel (

-[RECORD 1
ash_time
datid
datname
pid
usesysid
usename
application_name
client_addr
client_hostname
client port
backend start
xact_start
query start
state change
wait event type
wait event
state

backend xid
backend xmin
top level query
query

cmdtype

queryid

backend type
blockers
blockerpid
blocker state

]-——-

2019-05-24 21:05:03.868995+00
16407

pgio

10728

10

postgres

psqgl

=1
2019-05-24
2019-05-24
2019-05-24
2019-05-24
CPU

CPU

active

21:04:52.31127+00

21:04:52.312943+00
21:04:52.312943+00
21:04:52.312943+00

44860

SELECT * FROM mypgio('pgiol', 0, 60, 12800, 255, 8);

SELECT sum(scratch) FROM pgiol WHERE mykey BETWEEN 1101 AND 1356
SELECT

-7988659123606684389

client backend

PGSENTINEL'S FIRST COMPONENT:
A POSTGRESQL EXTENSION

BOVIDING ACTIVE SESSION HISTORY FEATURE.

VIEW ON GITHUB

ooo |

pgSentinel

@Pg_Sentinel

pgSentinel, an open-source monitoring and troubleshooting tool for #;

LhVWIbLLJH’quVHVH”\'Staytuned“_

© Paris, France (& pgsentinel.com [Joined April 2018

63 Following 171 Followers

OBF rollowed by Elisa Usai, Daniel Westermann, and 26 others you follow

https://github.com/pgsentinel/pgsentinel

pgSentinel

Why a sampling approach (vs counters)
 Limited overhead (sampling every second)

Maximum information to mine

No overhead on targeted sessions

Size proportional to the load: long running query, or frequent short ones

Links all dimension together (query, client, CPU, system calls)

*Data model
*Queries

Application

*Optimizer
*Execution

*CPU, Memory
(SyStem « Storage (1/0)

Database

pgSentinel

m Backend g WAL AN a\. Application :Bﬁzig]s()del

uplate Database grecyior
DataFileWrite - (System :gtF;lrJégl\ge(r;OO;y

- TR N — I
cornmit
WALrgLock Counters and ratios:
write() fsync() o « many statistics for each layer
I B e - hard to match together
Wﬁﬂ@d@wg'

pgSentinel

. . *Data model

Backend WAL E Application .5 qries
*Optimizer

Database *Execution

*CPU, Memory

(SyStem *Storage (I/0)

DataFileWrte
—

ASH Sampling:
write() fsyne() - not all activity, but the high load
""""""" « linked together

m E « links end-user response time
www.websequencediagrams.com

with system resources
o)

I_II_II_II_II_ILI_I

I_II_II_I[_\ HEEEE
:

NS

\

The database Is slow

*Data model

ASH: Application [ices
) . ,) ——
where is time spent” Database gyocion
' : -CPU, M
Execution plans: System CPU: Memoy

=

NS

« why is time spent

Platform benchmark:
- what can be improved

Those are just some tools... the most important is the method.

\

| do not read Buffer Cache Hit %

=

NS

Because a 'good' BCHR means that: Cache Hit Ratio

99 0%

« my cache is correctly sized

« my cache is too large and | waste memory
« my bad queries always read the same pages (bad nested loop)

« or anything else...

Doesn't account for the many levels of cache (database, filesystem, storage)
And it means nothing about the End User Response Time
Wait Events and ASH measure the cache miss impact on response time

| do not read Linux Load Avg.

[torvalds / linux

Code Pull requests 263 Projects ‘0 Security Pulse Community

Because on Linux:

Branch: master v | linux / kernel / sched / loadavg.c

’ it iS nOt Only abOUt CPU hnaz sched: loadavg: make calc_load_n() public
« it counts some |/O waits s conutors 0 35 52
« and other uninterruptible sleeps == e ux

// SPDX-License-Identifier: GPL-2.9

« and ... it is a silly number:

* kernel/sched/loadavg.c

* This file contains the magic bits required to compute the global loadavg
* figure. Its a silly number but people think its important. We go through
* great pains to make it work on big machines and tickless kernels.

*/

#include "sched.h"

http://www.brendangreqqg.com/blog/2017-08-08/linux-load-averages.html

Find file

5c54f5b o

Raw = Blame & History L

http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html

| rarely run pgbench

pgbench --no-vacuum --select-only —--protocol=prepared --client=24
-—-Jobs=12
. y
Communication with front: - e
o, generic_file..
pPa getbyte (pgcomm.c) e et |
_Mfsr. Vs read \ I \
ReadyForQuery (dest.c) e T ! T
atry . | | — i - 1
| | Ezpreadmnmm | 18 || FileRead 1 = [7] I
. § 19 || FileRead |18 morssd v i s] i
Only 25% CPU in DMU/TCL: | | &l e B B EBE L
|01 bt relandgetbuf I Bl index fetch heap N dom [~ 1] do_syse.. isysw A
PortalStart/Run (query sesssss 1B | || I E— m S | oo ik WSS ew (8
e : IIWI e |\=|NF e, . gm"’mjﬁm“;:.' Wl "m
CommitTransaction (xact Bindex getnext s I = .|:g I ﬁmfmfﬁ." I E— sk — ||”mm= \ : r-=|
Brecscan PostgresMain
. standard_ExecutorRun ServerLoop
(7% is under ReadBuffer) i 1
PostgresMain | I __libc_start_main
SERTETEE Costat

https://medium.com/@FranckPachot/do-you-know-what-you-are-measuring-with-pgbench-d8692a33e3d6

https://medium.com/@FranckPachot/do-you-know-what-you-are-measuring-with-pgbench-d8692a33e3d6

tools, authors and links

Platform tuning: pgio
- Kevin Closson

« https://github.com/therealkevinc/pgio
Query tuning: pg_hint_plan
- Kyotaro Horiguchi

- http://pghintplan.osdn.jp/pg_hint_plan.html

Session tuning: pgSentinel ASH
- Bertrand Drouvot

- https://github.com/pgsentinel/pgsentinel

Y @FranckPachot
http://blog.pachot.net

https://github.com/therealkevinc/pgio
http://pghintplan.osdn.jp/pg_hint_plan.html
https://github.com/pgsentinel/pgsentinel
https://twitter.com/FranckPachot
http://blog.pachot.net/

Y @FranckPachot

COre M essage http://blog.pachot.net

Many experienced Oracle DBA are going to PostgreSQL
- they bring new tools
- they bring new methods

Acquired during decades admin on huge enterprise critical systems

 Forget about ratios and silly numbers
- Focus on the end-user response time
- Mine activity and drill-down to root cause

https://twitter.com/FranckPachot
http://blog.pachot.net/

