Performance analysis at full power

Julien Rouhaud

pgconf.eu 2019

Oct. 16th 2019

Julien Rouhaud Performance analysis at full power

@ Julien Rouhaud, from France

e Working with PostgreSQL since 2008
e DBA, consulting, developer

@ Author of HypoPG and other tools
@ Some contributions to PostgreSQL

Julien Rouhaud Performance analysis at full power

Why this talk
My own experience

@ Based on my experience as database administrator
@ (subset of) Existing (or new) facilities | find most
useful
e Open source
e For performance analysis'!
@ There are many other facilities availables and other
approaches
@ Sometime complementary (some info are only
available in the logs, pgBadger is so useful)

Julien Rouhaud Performance analysis at full power

Why this talk
PostgreSQL’s moving fast

@ PostgreSQL changes
o New features for better performance
@ New bottlenecks
e New performance counters

@ Lot of metrics available on the OS side
e top, perf, iostat...

@ PostgreSQL’s core statistics

@ some metrics available

e Cumulated statistics

e No underlying system metrics

e but extensible, there are tools to help!

Julien Rouhaud Performance analysis at full power

PostgreSQL statistics
How it works

@ Some in core, some in contrib, some in external
extensions

@ Almost all of them are cumulated counters over
time

@ Usually store information in shared memory

@ Accessible with views or Set Returning Functions

Julien Rouhaud Performance analysis at full power

PostgreSQL statistics

List of in-core views

select viewname from pg views where viewname
viewname
t bgwriter
rogress_vacuum
rogress cluster
progress create index
t all ta
xact all t
sys tables
t xact sys tables

t user tables

t xact user tables

t all indexes

sys indexes

t user indexes

t activity

t replication

t wal receiver

t subscription

t ssl

t gssapi

t database

t database conflicts
t user functions

t xact user functions
t archiver

s

'"pg

-+ ottt

+ o+t

~+ +

—+

-+ +

—+ +

—+

-+

-+ -+
VI VI ¥ T V¥ [T I VIV VI o1 R VI I« R VI o oV« VY [T R 1]
-+

~+

J

Julien Rouhaud Performance analysis at full power

PostgreSQL statistics
The limits

@ No historisation done by PostgreSQL

@ You know the cumulated counters since the last
reset

@ Are those counters always increasing the same
way ?
@ What happened yesterday between 9AM and 2PM?

Julien Rouhaud Performance analysis at full power

PostgreSQL statistics

Raw data

table pg stat bgwriter ;
-[RECORD 1]
checkpoints timed
checkpoints req
checkpoint write time
checkpoint sync time
buffers checkpoint
buffers clean
maxwritten clean
buffers backend
buffers backend fsync
buffers alloc

stats reset

&= 00
oo

=]
[9
=]
5]

[E*ITY)
9

2
610

@ s
w2 W
TN Y R -
%] []
w o
I [T+ I =Y

Julien Rouhaud Performance analysis at full power

PostgreSQL statistics
The solution

@ Get all metrics every few minutes, and store it
somewhere

@ You can do that manually with cron or custom script

@ Or use PoOWA
e Extensible infrastructure to historize multiple data
sources
e optional background worker for a self contained
solution
e optional daemon for more complex setup
e Custom Ul to vizualize and analyze metrics

Julien Rouhaud Performance analysis at full power

PostgreSQL statistics

Time visualisation

Checkpointer activity @

Y

o
| L J\,;_,J\/\/_,\

®Buflersalioc ~ mBuffers checkpoint v @Synctime @ Wite time

Background writer @

@ Maxwritten clean ®Buffers clean

Julien Rouhaud Performance analysis at full power

pg_stat statements
Must have extensions

@ Official contrib
@ Global view of what’s happening on your server

@ Query normalization, based on object identifiers

@ Cumulate many statistics per queryid, userid,
dbid
@ cumulated runtime and number of execution
@ min, max, mean time
@ shared/local buffers access (hit, read, dirtied,
written)
e temps files
e 10 timing (depending on track_io_timing)

Julien Rouhaud Performance analysis at full power

pg_stat statements
What can we learn?

@ Most frequent queries

@ Slowest queries

@ Queries generating most amount of temporary files
@ Per-query hit-ratio

@ Queries requiring more work_mem

Q...

Julien Rouhaud Performance analysis at full power

pg_stat statements

Query example

SELECT round(total_time::numeric/calls, 2) AS avg_time, mean_time,
rows/(calls) AS avg_rows,
shared_blks_hit * 100 / (shared_blks_hit+shared_blks_read) AS hit_ratio,
query

FROM pg_stat_statements s JOIN pg_database d ON d.oid = s.dbid

WHERE datname = 'bench' AND (shared_blks_hit+shared_blks_read) > 0O

ORDER BY total_time / calls DESC;

HERE t
$1 WHERE bic

Julien Rouhaud rmance analysis at full power

pg_stat statements
Over time

@ Query runtime per second (kind of SQL load)

Query runtime per second (all databases) @

— — 1245\ PN

@ Queries per sec ®Runtime per sec ®Avg runtime

@ global, per-database or per-query

Julien Rouhaud Performance analysis at full power

pg_stat statements

On time interval

@ And general consumption over a specific interval

Details for all databases

Q o Export
Database #Calls ~ Runtime Avg runtime Blocks read Blocks hit Blocks dirtied Blocks written Temp Blocks written /0 time
benct 4316700 145574 ms 340 ps 10961M 912.08M 66.73 M 80.00 K 0B 13s283ms
v 1,571.00 65406 ms 4 ms 80 ps 40.00 K 11.84 M 8.00K 0B 0B 1ms 280 us
379.00 Smin51s 928 ms 450 s 399G 88.00 G 694.34 M 52117 M 661.95 M 37s 116 ms
4000 580ms926us 14 ms 520 ps 56.00 K 5.91M 176.00 K 0B 0B 2ms 310 us
obvious 25.00 1s264ms 50 ms 560 ps 39777 M 37177 M 0B 0B 0B 920 ms 150 us

@ Drill-down approach to investigate performance
issues

ien Rouhau Performance analysis at full power

pg_stat statements

Identify slow queries

Details for all queries

a & Expor
Execution 1/0 Time Blocks Temp blocks
Query # Time v Avg time Read Write Read Hit Dirtied Written Read Written
SELECT pg_sleep($1) 88.00 9min48s 65687 ms 0 0 0B 0B 0B 0B 0B 0B
SELECT count(*) FROM commandes cmd JOIN lignes_commandes lc ON lc.nume.. 16.00 2min19s 85709 ms 6min52s 0 205G 479.01M 0B 0B 0B 0B
SELECT COUNT(*) FROM pieces_fournisseurs WHERE cout_piece >= $1 1000 49s642ms 45964 ms 2min 27 s 0 457.24M 7549M 0B 0B 0B 0B
SELECT numero_commande, etat _commande FROM commandes WHERE client id 16.00 405960 ms 25560 ms 1min 37 s 0 21458 M 388.17M 0B 0B 0B 0B
SELECT * FROM clients cl JOIN contacts co ON co.contact_id = cl.contac.. 16.00 29s461ms 15841 ms 0 0 0B 671.41M 0B 0B 54063 M 540.63M
SELECT co.nom FROM clients cl JOIN contacts co ON co.contact_id = cl.c.. 16.00 175796 ms 1s112ms 0 0 0B 680.94 M 0B 0B 0B 0B
SELECT COUNT(*) FROM pays p JOIN contacts con ON con.code pays = p.cod.. 16.00 105702 ms 668 ms 880 s 0 0 0B 680.65M 0B 0B 421.55M 42599 M
ALTER TABLE ONLY public.lignes _commandes ADD CONSTRAINT lignes_command.. 1.00 45587 ms 4s587ms 523ms195pus 16ms971ps 17257M 4125G 40.00K 10.84 M 0B 0B
COPY public.lignes_commandes (numero_commande, piece id, fournisseur_i. 1.00 45528 ms 45528 ms 0 130ms242ps 15080 M 24.00K 150.80 M 134.80 M 0B 0B
SELECT * FROM contacts 16.00 35188 ms 199 ms 288 s 0 0 0B 39550 M 0B 0B 0B 0B
SELECT COUNT(*) FROM commandes WHERE date commande BETWEEN (S1 || $2) 16.00 25181 ms 136 ms 315 ps 656 ms 442 ps 0 18445M 418.30M 0B 0B 0B 0B
SELECT COUNT(*) FROM pays p JOIN contacts con ON con.code pays = p.cod.. 16.00 2s144ms 134 ms 16 ps 0 0 0B 680.04 M 0B 0B 0B 0B
SELECT con.nom || $1 || code_pays || $2 FROM clients cli JOIN contacts.. 16.00 1s378ms 86 ms 152 ps 0 0 0B 680.94 M 0B 0B 0B 0B
SELECT nom FROM contacts ¢ JOIN pays p ON p.code pays = c.code_pays WH.. 16.00 1s235ms 77 ms210 ps 0 0 0B 412.13M 0B 0B 0B 0B
COPY public.pieces (piece id, nom, fabriquant, marque, type piece, tai. 1.00 15225 ms 15225 ms 0 39ms518ps 61.70M 0B 61.70M 4570M 0B 0B
COPY public.pieces_fournisseurs (piece_id, fournisseur_id, quantite di. 1.00 1s34ms 1s34ms 0 33ms2ps 5327M 4800K 5327M 372TM 0B 0B
SELECT COUNT(*) FROM commandes WHERE date commande BETWEEN ($1 || $2):.. 16.00 903ms88ps 56 ms443 us 122 ms 540 ps 0 157.42M 44533 M 0B 0B 0B 0B
SELECT COUNT(*) FROM pieces_fournisseurs WHERE quantite disponible < $.. 10.00 899ms725pus 89 ms 972 us 467 ms 187 ps 0 44974M 8299M 0B 0B 0B 0B

ulien Rouhau Performance analysis at full power

pg_stat kcache
Kernel metrics

@ github.com/powa-team/pg_stat kcache

@ Wrapper around get_rusage(2)

@ Gives access to kernel metrics, aggregated per
(queryid, dbid, userid) :
e Physical disk reads and writes
@ User and system CPU
e Context switches, page faults

Julien Rouhaud Performance analysis at full power

http://github.com/powa-team/pg_stat_kcache/
http://man7.org/linux/man-pages/man2/getrusage.2.html

pg_stat kcache
What can we learn?

@ "Real" hit-ratio : shared_buffers vs OS cache vs Disk
access

@ CPU intensive queries
@ Too high number of active queries

Julien Rouhaud Performance analysis at full power

pg_stat kcache

Examples - per database

Blocks (On database tpc) @

954 Mp:

L
fj\,fﬂ\/\A /“M

2 AN 72\ Ao/ AN AN

@ Total shared buffers hit @ Total system cache hit & Total disk read

System resources (events per sec) @ &

A LA LN A A A A AL A
®Involuntary context switches @ Voluntary context switches ~ ~ mSoft page faults ~ ~ @ Hard page faults

ulien Rouhau Performance analysis at full power

pg_stat kcache

Examples - per query

CPU Time repartition @ &

- | |
-
0 10

B CPU other time / Query time ®CPU system time / Query time ®CPU user time / Query time

ulien Rouhaud Performance analysis at full power

pg_wait sampling
Wait events monitoring

github.com/postgrespro/pg_wait_sampling/
Developed by Postgres Professional

Efficient high frequency sampling of wait events
Default period is 10ms, customisable
Aggregated per queryid, dbid

For 9.6+ only, when Wait Events were introduced

Julien Rouhaud Performance analysis at full power

https://github.com/postgrespro/pg_wait_sampling/
https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE

pg_wait sampling
What can we learn?

@ Low level bottlenecks that can’t be seen at SQL
level
o Costly parts of a query execution

e Lightweight locks contention (Buffer mapping, WAL
write lock...)

e IPC, 10 and other events

Julien Rouhaud Performance analysis at full power

pg_wait sampling

Examples

Per database :
Wait Events (per second) @ ¢

A \[A NN
£
LA N NS (i) i AP LEVAND Sedz? 11¥57/
[“[e] mlPC ® Extension mClient @ Activity @ Buffer pin ®Lock mLightweight Lock

Julien Rouhaud Performance analysis at full power

pg_wait sampling

Examples

Per query :

#of execution: 20

Total runtime: 10 min 5 s 396 ms Hit ratio: 22.49%

Query detail PG Cache 10 System resources Wait Events Predicates

Wait Events (per second) @ &

Wait events summary &

Q L
Event Type Event # of events ~
w 10 DataFileRead 52,872.00
IPC BgWorkerShutdown 1,504.00
B IPC ExecuteGather 48.00
IPC ParallelFinish 14.00
P IPC Hash/Build/Hashinglnner 8.00

ARPA f:4p {45

lle] Timeout sIPC ®Extension | Client @ Activity
@ Buffer pin ®Lock @ Lightweight Lock

ulien Rouhau Performance analysis at full power

pg_qualstats
Statistics on predicates

@ github.com/powa-team/pg_qualstats
@ Gather statistics on predicates (WHERE / JOIN
clauses)
e Number of underlying query executions
e Number of predicate’s operator execution
@ Selectivity
@ Sequential scan or index scan
@ Per queryid, userid, dbid

@ Sampled to avoid overhead (defaultis 1/
max_connections)

Julien Rouhaud Performance analysis at full power

http://github.com/powa-team/pg_qualsats/

pg_qualstats
What can we learn?

@ Detect missing indexes

@ Differentiate most executed, most/least filtering,
most frequent constants

@ Detect possible partial indexes

@ If sampled over time, avoid suggesting indexes for
night batches

Julien Rouhaud Performance analysis at full power

pg_qualstats

Constant distribution

Most executed values @

‘returned':text

v ®Others v m'shipped':text v ®'retumed":text

lien Rouhau Performance analysis at full power

pg_qualstats

Index suggestion

Index suggestion

» Possible indexes for attributes present in WHERE
pieces_fournisseurs.quantite_disponible < ? AND
pieces_fournisseurs.cout_piece >= ?:

With access method btree
o = Attribute

pieces_fournisseurs.cout_piece
Data distribution
approximately 1000 distinct values
= Attribute
pieces_fournisseurs.quantite_disponible

Data distribution

approximately 9985 distinct values

Julien Rouhaud Performance analysis at full power

HypoPG
Hypothetical indexes

@ github.com/HypoPG/hypopg

@ Hypothetical indexes, aka. "What if this index
existed ?"

@ Create "fake" indexes instantly, without any
resource consumption

@ EXPLAIN can use such index

Julien Rouhaud Performance analysis at full power

http://github.com/HypoPG/hypopg/

pg_qualstats + HypoPG

Index validation

#of execution: 20 Total runtime: 16 s 571 ms Hit ratio: 100.0%

Query detail PG Cache 1o System resources ‘Wait Events Predicates

Predicates used by this query
a :

Xpo

Predicate

Avg filter_ratio (excluding index)
WHERE "command, state = 2

Execution count (excluding index)
99.90% 258.500,000.00

Index suggestion The following indexes would be [EEJ:
« Possible indexes for

attributes present in WHERE

With access method btree

o = Attribute

EXPLAIN plan without suggested indexes: EXPLAIN plan with suggested index
command state
Data distribution
approximately 2 distinct values

With access method brin Query cost gain factor with hypothetical index: 99.41 %

Julien Rouhaud Performance analysis at full power

pg_qualstats + HypoPG
Global index suggestion

@ Get all executed queries on the given time interval

@ Get all interesting predicates (seq scan, filtering at
least 30%. ..

@ Get information about indexing capabilities
(operators, datatype, opclass...)

@ Analyze and suggest indexes to optimize all queries
with the least amount of indexes

@ Check with HypoPG that indexes would be used

Julien Rouhaud Performance analysis at full power

pg_qualstats + HypoPG

Global index suggestion

Index Used by

AND commandes.date_commande >= ? AND

WHERE commandes.client_id = ?
CREATE INDEX ON public.commandes USING commandes . date_commande ?
btree(client_id, date_commande) WHERE commandes.client_id = 7
ERE commandes.date_commande <= ? A

ID commandes. date_commande >= ?

WHER <2 AN
CREATE INDEX ON public.pieces fournisseurs USING HERE PEGEES FOmEEaas e (hepmilile oL
pieces fournisseurs.cout_picce >= 7
btree(cout_piece, quantite disponible) > _
WHERE pieces_fournisseurs.cout_piece >= ?

WHERI . = ? AND . ?
CREATE INDEX ON public.clients USING btree(solde, client id) JERE Clients, Cllien: i L) GlGis. el >
WHERE clients.solde > ?
CREATE INDEX ON public.commandes USING btree(date_commande) WHERE commandes.date_commande <= ? D commandes.date_commande >= ?

Hypothetical index creation error Reason

No hypothetical index creation error.

Query

SELECT COUNT(*) FROM pieces_fournisseurs WHERE quantite disponible < 2117::integer AND cout piece >= 976::numeric

SELECT co.nom FROM clients cl JOIN contacts co ON co.contact_id = cl.contact_id WHERE cl.solde > 448::numeric

SELECT count(*) FROM commandes cmd JOIN lignes commandes lc ON lc.numero_commande = cmd.numero_commande WHERE omd.client id = 4180::integer
SELECT numero_commande, etat commande FROM commandes WHERE client id = 4180::integer

SELECT COUNT(*) FROM pieces _fournisseurs WHERE cout piece >= 977::

umeric
SELECT COUNT(*) FROM commandes WHERE client_id = 13590::integer AND priorite_commande LIKE '3-%

Queries

boosted

7

2

2

2

Index used Gain

457%
17.11%
16.91%
99.74%
35.63%
99.75%

ulien Rouhau Performance analysis at full power

pg_track settings

History of configuration changes

@ github.com/rjuju/pg_track settings/
@ SQL only extension
@ detect and store the settings changed since last call

@ both global and object specific (eg. ALTER
DATABASE SET)

@ and also postgres restart

Julien Rouhaud Performance analysis at full power

https://github.com/rjuju/pg_track_settings/

pg_track settings

Example

What changed since yesterday ?

SELECT * FROM pg_track_settings_diff(now() - interval 'l day', now());
name | from_setting | from_exists | to_setting | to_exists

--------------------- Sy g

checkpoint_segments | 30 | t | 35 | t

(1 row)

Julien Rouhaud Performance analysis at full power

pg_track settings

Example

What's the full history for a specific setting?

SELECT * FROM pg_track_settings_log('checkpoint_segments');

ts | name | setting_exists | setting
777777777777777777777777777 Sy
2015-01-25 01:01:42.58+01 | checkpoint_segments | t | 35
2015-01-25 01:00:37.44+01 | checkpoint_segments | t | 30

(2 rows)

Julien Rouhaud Performance analysis at full power

pg_track settings

Example

What was the configuration like at a specific
timestamp?

SELECT * FROM pg_track_settings('2015-01-25 01:01:00');

name | setting
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, oo
[...]
checkpoint_completion_target | 0.9
checkpoint_segments | 30
checkpoint_timeout | 300
[...]

Julien Rouhaud Performance analysis at full power

pg_track settings

Graph annotation

Available in POWA, filtered by database if applicable

Query runtime per second (all databases) @

8 3 BK
i<
4 \ | Y K
. .
© synchronous commit 0 synchronous commit
changed /\ ! changea:
PN A & offtoon PN | ontooff
database pgbench database pgbench
® Queries per sec ®Runtime pg °" d2!2base pabenct ne s
Getect on Apr 222019 detect on Apr 222019
9:31 AM 10:00 AM
0 work_mem changed: © work_mem changed:
AMB to 256MB. 256MB to 1MB
I o oatabase th I o catabase e |
q detect on Apr 222019 detect on Apr 222019
Details for all databases 031 M 1000 AM

Q

Performance analysis at full power

Demo

@ Demo
@ dev-powa.anayrat.info
@ (not credential required, just click connect)

Julien Rouhaud Performance analysis at full power

https://dev-powa.anayrat.info

Conclusion

@ A lot of tool are there to help
@ Can be used alone or together
@ Or even integrated in your own solution

Julien Rouhaud Performance analysis at full power

Questions?

@ rjuju.github.io
@ Y©@rjujul23

Julien Rouhaud Performance analysis at full power

https://rjuju.github.io
https://twitter.com/rjuju123
https://hub.docker.com/u/powateam

