
1/40

Performance analysis at full power

Julien Rouhaud

pgconf.eu 2019

Oct. 16th 2019

Julien Rouhaud Performance analysis at full power

2/40

Who am I

Julien Rouhaud, from France
Working with PostgreSQL since 2008
DBA, consulting, developer

Author of HypoPG and other tools
Some contributions to PostgreSQL

Julien Rouhaud Performance analysis at full power

3/40

Why this talk
My own experience

Based on my experience as database administrator
(subset of) Existing (or new) facilities I find most
useful
Open source
For performance analysis !

There are many other facilities availables and other
approaches

Sometime complementary (some info are only
available in the logs, pgBadger is so useful)

Julien Rouhaud Performance analysis at full power

4/40

Why this talk
PostgreSQL’s moving fast

PostgreSQL changes
New features for better performance
New bottlenecks
New performance counters

Lot of metrics available on the OS side
top, perf, iostat...

PostgreSQL’s core statistics
some metrics available
Cumulated statistics
No underlying system metrics
but extensible, there are tools to help !

Julien Rouhaud Performance analysis at full power

5/40

PostgreSQL statistics
How it works

Some in core, some in contrib, some in external
extensions
Almost all of them are cumulated counters over
time
Usually store information in shared memory
Accessible with views or Set Returning Functions

Julien Rouhaud Performance analysis at full power

6/40

PostgreSQL statistics
List of in-core views

Julien Rouhaud Performance analysis at full power

7/40

PostgreSQL statistics
The limits

No historisation done by PostgreSQL
You know the cumulated counters since the last
reset
Are those counters always increasing the same
way?
What happened yesterday between 9AM and 2PM?

Julien Rouhaud Performance analysis at full power

8/40

PostgreSQL statistics
Raw data

Julien Rouhaud Performance analysis at full power

9/40

PostgreSQL statistics
The solution

Get all metrics every few minutes, and store it
somewhere
You can do that manually with cron or custom script
Or use PoWA

Extensible infrastructure to historize multiple data
sources
optional background worker for a self contained
solution
optional daemon for more complex setup
Custom UI to vizualize and analyze metrics

Julien Rouhaud Performance analysis at full power

10/40

PostgreSQL statistics
Time visualisation

Julien Rouhaud Performance analysis at full power

11/40

pg_stat_statements
Must have extensions

Official contrib
Global view of what’s happening on your server
Query normalization, based on object identifiers
Cumulate many statistics per queryid, userid,
dbid

cumulated runtime and number of execution
min, max, mean time
shared/local buffers access (hit, read, dirtied,
written)
temps files
IO timing (depending on track_io_timing)

Julien Rouhaud Performance analysis at full power

12/40

pg_stat_statements
What can we learn?

Most frequent queries
Slowest queries
Queries generating most amount of temporary files
Per-query hit-ratio
Queries requiring more work_mem
. . .

Julien Rouhaud Performance analysis at full power

13/40

pg_stat_statements
Query example

SELECT round(total_time::numeric/calls, 2) AS avg_time, mean_time,
rows/(calls) AS avg_rows,
shared_blks_hit * 100 / (shared_blks_hit+shared_blks_read) AS hit_ratio,
query

FROM pg_stat_statements s JOIN pg_database d ON d.oid = s.dbid
WHERE datname = 'bench' AND (shared_blks_hit+shared_blks_read) > 0
ORDER BY total_time / calls DESC;

Julien Rouhaud Performance analysis at full power

14/40

pg_stat_statements
Over time

Query runtime per second (kind of SQL load)

global, per-database or per-query

Julien Rouhaud Performance analysis at full power

15/40

pg_stat_statements
On time interval

And general consumption over a specific interval

Drill-down approach to investigate performance
issues

Julien Rouhaud Performance analysis at full power

16/40

pg_stat_statements
Identify slow queries

Julien Rouhaud Performance analysis at full power

17/40

pg_stat_kcache
Kernel metrics

github.com/powa-team/pg_stat_kcache
Wrapper around get_rusage(2)
Gives access to kernel metrics, aggregated per
(queryid, dbid, userid) :

Physical disk reads and writes
User and system CPU
Context switches, page faults

Julien Rouhaud Performance analysis at full power

http://github.com/powa-team/pg_stat_kcache/
http://man7.org/linux/man-pages/man2/getrusage.2.html

18/40

pg_stat_kcache
What can we learn?

"Real" hit-ratio : shared_buffers vs OS cache vs Disk
access
CPU intensive queries
Too high number of active queries

Julien Rouhaud Performance analysis at full power

19/40

pg_stat_kcache
Examples - per database

Julien Rouhaud Performance analysis at full power

20/40

pg_stat_kcache
Examples - per query

Julien Rouhaud Performance analysis at full power

21/40

pg_wait_sampling
Wait events monitoring

github.com/postgrespro/pg_wait_sampling/
Developed by Postgres Professional
Efficient high frequency sampling of wait events
Default period is 10ms, customisable
Aggregated per queryid, dbid
For 9.6+ only, when Wait Events were introduced

Julien Rouhaud Performance analysis at full power

https://github.com/postgrespro/pg_wait_sampling/
https://www.postgresql.org/docs/current/monitoring-stats.html#WAIT-EVENT-TABLE

22/40

pg_wait_sampling
What can we learn?

Low level bottlenecks that can’t be seen at SQL
level

Costly parts of a query execution
Lightweight locks contention (Buffer mapping, WAL
write lock. . .)
IPC, IO and other events

Julien Rouhaud Performance analysis at full power

23/40

pg_wait_sampling
Examples

Per database :

Julien Rouhaud Performance analysis at full power

24/40

pg_wait_sampling
Examples

Per query :

Julien Rouhaud Performance analysis at full power

25/40

pg_qualstats
Statistics on predicates

github.com/powa-team/pg_qualstats
Gather statistics on predicates (WHERE / JOIN
clauses)

Number of underlying query executions
Number of predicate’s operator execution
Selectivity
Sequential scan or index scan

Per queryid, userid, dbid
Sampled to avoid overhead (default is 1 /
max_connections)

Julien Rouhaud Performance analysis at full power

http://github.com/powa-team/pg_qualsats/

26/40

pg_qualstats
What can we learn?

Detect missing indexes
Differentiate most executed, most/least filtering,
most frequent constants
Detect possible partial indexes
If sampled over time, avoid suggesting indexes for
night batches

Julien Rouhaud Performance analysis at full power

27/40

pg_qualstats
Constant distribution

Julien Rouhaud Performance analysis at full power

28/40

pg_qualstats
Index suggestion

Julien Rouhaud Performance analysis at full power

29/40

HypoPG
Hypothetical indexes

github.com/HypoPG/hypopg
Hypothetical indexes, aka. "What if this index
existed?"
Create "fake" indexes instantly, without any
resource consumption
EXPLAIN can use such index

Julien Rouhaud Performance analysis at full power

http://github.com/HypoPG/hypopg/

30/40

pg_qualstats + HypoPG
Index validation

Julien Rouhaud Performance analysis at full power

31/40

pg_qualstats + HypoPG
Global index suggestion

Get all executed queries on the given time interval
Get all interesting predicates (seq scan, filtering at
least 30%. . .
Get information about indexing capabilities
(operators, datatype, opclass. . .)
Analyze and suggest indexes to optimize all queries
with the least amount of indexes
Check with HypoPG that indexes would be used

Julien Rouhaud Performance analysis at full power

32/40

pg_qualstats + HypoPG
Global index suggestion

Julien Rouhaud Performance analysis at full power

33/40

pg_track_settings
History of configuration changes

github.com/rjuju/pg_track_settings/
SQL only extension
detect and store the settings changed since last call
both global and object specific (eg. ALTER
DATABASE SET)
and also postgres restart

Julien Rouhaud Performance analysis at full power

https://github.com/rjuju/pg_track_settings/

34/40

pg_track_settings
Example

What changed since yesterday?

SELECT * FROM pg_track_settings_diff(now() - interval '1 day', now());
name | from_setting | from_exists | to_setting | to_exists

---------------------+--------------|-------------|------------|----------
checkpoint_segments | 30 | t | 35 | t

(1 row)

Julien Rouhaud Performance analysis at full power

35/40

pg_track_settings
Example

What’s the full history for a specific setting?

SELECT * FROM pg_track_settings_log('checkpoint_segments');
ts | name | setting_exists | setting

---------------------------+---------------------+----------------+---------
2015-01-25 01:01:42.58+01 | checkpoint_segments | t | 35
2015-01-25 01:00:37.44+01 | checkpoint_segments | t | 30

(2 rows)

Julien Rouhaud Performance analysis at full power

36/40

pg_track_settings
Example

What was the configuration like at a specific
timestamp?

SELECT * FROM pg_track_settings('2015-01-25 01:01:00');
name | setting

------------------------------+---------
[...]
checkpoint_completion_target | 0.9
checkpoint_segments | 30
checkpoint_timeout | 300

[...]

Julien Rouhaud Performance analysis at full power

37/40

pg_track_settings
Graph annotation

Available in PoWA, filtered by database if applicable

Julien Rouhaud Performance analysis at full power

38/40

Demo

Demo
dev-powa.anayrat.info

(not credential required, just click connect)

Julien Rouhaud Performance analysis at full power

https://dev-powa.anayrat.info

39/40

Conclusion

A lot of tool are there to help
Can be used alone or together
Or even integrated in your own solution

Julien Rouhaud Performance analysis at full power

40/40

Questions?

rjuju.github.io
�@rjuju123
Ïpowateam (pg12 compatible)

Julien Rouhaud Performance analysis at full power

https://rjuju.github.io
https://twitter.com/rjuju123
https://hub.docker.com/u/powateam

