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About me dbi

' services

Hervé Schweitzer
CTO

Principal consultant

+41 79963 43 67

X herve.schweitzer[at]dbi-services.com
YW @Herveschweitzer
MY Hervé Schweitzer

==:IT-Tage _ DOAG PGConf.DE Swiss PGDay " "' . .

user group
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Who we are

o
' services

The Company

> Founded in 2010 °

> More than 70 specialists . Basel °

> Specialized in the Middleware Infrastructure Delémont Zurich
> The invisible part of IT

. . ©
> Customers in Switzerland and all over Europe Bern

Nyon
@

Our Offer

> Consulting

> Service Level Agreements (SLA)
> Trainings

> License Management

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19



Agenda i comvee-

1.My story

2.Some tips
3.Database optimizer
4.0Object statistics
5.Execution plan

6.Conclusion

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19



My story




My story A cenices

1997 — 1999 Linux Admin/Adabas DBA

1999 — 2003  Oracle DBA (Mainly Database performance Tuning)

2003 -2010  Oracle Senior Consultant (HA-Tuning)

2010—-2018  CTO — Oracle Consultant (HA-Tuning-GoldenGate) — Oracle OCM
2018 —Today  CTO — Oracle Consultant / PostgreSQL performance Tuning

Why the switch ?

> The PostgreSQL database is part of our daily business today

> Both RDBMS have many similarities (Linux based, cmdline with scripts)

> Beta and development releases are available without any restriction to test future features
> You can implement what you recently learned © without any licenses issues
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Some tips

> Prompt
> MacOS user




Some tips
Prompt

Default PostgreSQL prompt
> |s terminating with "#"

postgres@dbi-pg :/home/postgres/ [PGl1l] psgl -U postgres postgres
postgres=#

> Hashtag "#" prompt can be confusing, because is also the default Linux ROOT prompt
[root@dbi-pg ~]1#

> Therefore | decided to change it, to an Oracle like prompt to begin with Postgres ©
postgres@dbi-pg :/home/postgres/ [PGll] psgl -U postgres postgres
postgres PSQL> \c test

You are now connected to database "test" as user "postgres".
test PSQL>

test PSQL> first line of multiline code

(test Po0L> second line of multiline code

(test PSQL> ;
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Some tips

Prom pt d b' services

How to change the prompt of the Postgres Linux user

>PROMPT1
> Single line code ended by ";"
>PROMPT?2
> Multi line code ended by ";"

]

postgres@dbi-pg :/home/postgres/ [PG111] cat .psqlrc

\set PROMPT1 '$/ PSQL>'
\set PROMPT2 '(%/ PSQL>'
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Some tips s
MacOS user db' T

Backslash on MacOS Without always entering a 3 key combination : Alt + Maj + /
> Install Karabiner-Elements and configure another key combination

® O Karabiner-Elements Preferences

Simple Modifications  Function Keys | &gl @ eeliileciifonisi Devices
m Parameters

Enabled rules

Right command + 7 => Backslash(\)

Why this combination
> Because slash is "Shift + 7"
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> QOracle vs PostgreSQL terminologies
> Optimizer flow

> Parsing

> Planning

> Executions

> Optimizer parameter

> The cost model




Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Optimizer

> Transforms the statement

> Evaluates costs for all operation to get costs for several execution plans
> Generate different execution plans

> Choose execution plan with the best (lowest) cost

Oracle and PostgreSQL optimizer are working the same way

Object Statistics

> Required for the optimizer to generate the best access plan with the lowest cost
> Object statistics collect different information
> QOracle and PostgreSQL collect also histograms to identify the content of one columns

Oracle and PostgreSQL Statistics are working the same way
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Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Buffer Cache

> QOracle buffer cache

> All data blocks are saved into the database buffer cache

With Oracle the memory will be mainly managed from the database

> PostgreSQL Shared buffer cache
> Less blocks are cached, all other data are cache on the OS level (filesystem cache)

With PostgreSQL the memory will be mainly managed from the OS
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Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Shared Pool

> QOracle Shared Pool
> All dictionary information, executions plans, running information will be cached there

Oracle shared memory is available for existing and new sessions

> PostgreSQL does not have any Shared Pool for the moment
> Session information is only cached in the session it self, nothing is shared cross-session

No Shared Pool exist for PostgreSQL

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19



Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Parsing (log parser stats)

> Check the syntax and semantic

> Check access rights

> PostgreSQL also rewrite the SQL and format it into a raw tree format
> With a PREPARE statement this step occurs once

PostgreSQL does a little bit more during parsing time

Optimizing/Planning (log_planner stats)

> Step where the best plan will be generated based on the object statistics

> For Oracle, the rewrite of the SQL is done here

> This step is the Hard Parsing time for Oracle, what not always occurs if available into the SharedPool
> With a Postgres PREPARE statement after 5 executions it will sometimes also bypassed

Oracle does not always need this step(HardParse), if the cursor is still available on the SharedPool
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Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Executing (log_executor stats)
> Executions of the SQL based of the execution plan generated
> During execution the data will be fetched back to the client

Oracle and PostgreSQL executions are working the same way
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Database optimizer
Optimizer flow

SQL Statement

Parse statement Rewrite query

Executing Planning

Execute plan Generate Plan Generate Paths

Object Statistics
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Database optimizer

Parsing

Display the parsing time of an SQL statement

> System level
postgres PSQL>
postgres PSQL>
> Session level

postgres PSQL>
postgres PSQL>

> User level
postgres PSQL>

alter system set log parser stats=true;

select pg reload conf();

set log parser_stats=true;

select 1;

alter user HR set log parser_ stats=true;

> Qutput into logfile postgresqgl.log

2018-09-24 22:20:40.887 CEST - 61 - 15900 - [local] - postgres@postgres LOG:

! 0.000004 s user, 0.000019 s system, 0.000021 s elapsed

2018-09-24 22:20:40.887 CEST - 64 - 15900 - [local] - postgres@postgres LOG:

' 0.000003 s user, 0.000013 s system, 0.000016 s elapsed

2018-09-24 22:20:40.887 CEST - 67 - 15900 - [local] - postgres@postgres LOG:

' 0.000000 s user, 0.000002 s system, 0.000002 s elapsed

How PostgreSQL tuning can profit from 20 years Oracle tuning
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Database optimizer .
Planning A =rvees

Display the planner time of an SQL statement
> System level

postgres PSQL> alter system set log planner stats=true;
postgres PSQL> select pg reload conf();
postgres PSQL> select 1;

> Session level

postgres PSQL> set log planner stats=true;
postgres PSQL> select 1;

> User level

postgres PSQL> alter user HR set log planner stats=true;

> Qutput into logfile postgresqgl.log

2018-09-24 22:33:57.789 CEST - 2 - 16055 - [local] - postgres@postgres LOG: PLANNER STATISTICS o o
! 0.000018 s user, 0.000007 s system, 0.000025 s elapsed Inl
2018-09-24 22:33:57.789 CEST - 4 - 16055 - [local] - postgres@postgres STATEMENT: select 1; —
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Database optimizer .
Executions Al servies

Display the executor time of an SQL statement
> System level

postgres PSQL> alter system set log executor_ stats=true;
postgres PSQL> select pg reload conf();
postgres PSQL> select 1;

> Session level

postgres PSQL> set log executor stats=true;

postgres PSQL> select 1;

> User level

postgres PSQL> alter user HR set log _executor stats=true;

> Qutput into logfile postgresqgl.log

2018-01-04 12:02:11.202 CET [7832] STATEMENT: select 1;

2018-01-04 12:02:11.220 CET [2119] LOG: EXECUTOR STATISTICS
2018-01-04 12:02:11.220 CET [2119] DETAIL: ! system usage stats: h
! 0.000025 s user, 0.000000 s system, 0.000024 s elapsed ..
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Database optimizer A -srvee
Optimizer parameter

There are several parameters to control the optimizer's choice to access the data

postgres PSQL> show enable [TAB TAB]

enable bitmapscan enable hashagg enable indexonlyscan enable material
enable nestloop enable sort enable gathermerge enable hashjoin
enable indexscan enable mergejoin enable segscan enable tidscan

postgres PSQL> set enable hashagg=off;

It is not advisable to change these optimizer parameters
> They fake the optimizer estimations
> In fact they massively increase the cost, when turned off
> They are there only for exceptions (bugs)
>When it is really required
> Set a parameter on the session level?
> Set a parameter globally? " "

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19




Database optimizer .
The cost model dbj sess

There are several parameters that control cost calculations

Parameter Description Default Value
seq_page_cost The cost of one (sequential) page fetch from disk 1
random_page cost The cost of one random page fetch from disk 4

cpu_tuple_ cost The cost of processing each row 0.01
cpu_index_tuple cost  The cost of processing each index entry 0.005
Cpu_operator cost The cost of processing each operator or function 0.0025

> Everything is relative to seq_page cost

>When you are on SSDs: |Is the cost of a random scan still 4 times as expensive as a sequential scan?
> Try to tune the random_page_cost parameter
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Obiject statistics

> Statistics overview

> pg_class

> pg_stats

> Gathering object statistics




Object statistics dbi s

Statistics overview

Used to provide statical information about the data in a relation
> Numbers of rows

> Numbers of blocks

> Numbers of distinct values/nulls for a column
> The average rows width

> The most common values and their frequency
> Histogram bounds

Use catalog tables and views to get object statistics
> pg_class
> pg_stats

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19



Object statistics dbi s

pg_class

To check statistics on the table level

pgbench PSQL> select relname, relpages,reltuples::int, reltuples/relpages avgtuple
from pg class

where relname = 'pgbench accounts';

relname relpages reltuples avgtuple

pgbench accounts 163935 10000000 60.9997865007472
>relpages : Number of 8K block
> reltuples  : Number of rows
> avgtupl : Number of rows per block
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Object statistics e
o stats Al ==viee-

To check statistics on a column level

pgbench PSQL> select tablename,attname,null frac,avg width,n distinct

from pg_stats

where tablename = 'pgbench accounts';
| | | | I |
| tablename | attname | null frac | avg width | n distinct |
| | | | | |
| | | | I |
| pgbench accounts | aid | 0 | 4 | -1 |
| pgbench accounts | bid | 0 | 4 | 100 |
| pgbench accounts | abalance | 0 | 4 | 1 |
| pgbench accounts | filler | 0 | 85 | 1 |
| l l l l |
>attname : Column name
>null_frac : Fraction of column entries that are null 'ﬂl
>avg_width : Average width in bytes of column's entries = .

>n_distinct : Number of distinct values ( but negative values can exist, Ex. -1 indicates a unigue column)

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19




Object statistics dbi s

pg_stats - Histograms

Most common values and their frequency per column

pgbench PSQL> select most common vals,most common freqs

from pg _stats where tablename = 'pgbench accounts' and attname = 'bid';
-[ RECORD 1 ]--

most common vals | {21,68,88,25,14,53,58,61,7,44,35..
most common fregs | {0.0119667,0.0117667,0.0115,0.0114333,0.0114,0.0113333..

> The value of 21 has a frequency of 0.0119667
> The value of 68 has a frequency of 0.0117667

> The formula to calculate the frequency: count(value)/total rows
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Object statistics dbi s

pg_stats - Histograms

histogram_bounds

pgbench PSQL> select histogram bounds

from pg _stats where tablename = 'pgbench accounts' and attname = 'aid';

-[ RECORD 1 ]--
histogram bounds | {12,103238,213931,305537,410681,503952,610274,703390,801506,918762 ..

> These are groups of approximately the same number of values
> 103238-12 =103226
> 213931-103238 = 110693
> 305537-213931 = 91606
> The values in most_common_vals, if present, are omitted from this histogram calculation
>When the column data type does not have a "<" operator this column is null o«
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Object statistics dbi
pg_stats - Example

histogram_bounds - example

pgbench PSQL> select a,count(*) from tl group by a order by count(*);

1000
2000
2000

pgbench PSQL> select histogram bounds from pg stats where tablename = 'tl1';

histogram bounds

{1,2}
pgbench PSQL> select most_common vals,most common freqs from pg stats where tablename = 'tl1';
most common vals | most common freqgs
__________________ _|____________________________
o o
{4,5,3} | {0.39984,0.39984,0.19992} lﬂl
o o
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Object statistics .
Gathering object statistics di s

The formula when autovacuum kicks in to gather statistics

vacuum threshold = autovacuum analyze threshold
+ autovacuum analyze scale factor

* pg_class.reltuples

The default configuration

pgbench PSQL> select name,setting from pg settings
where name in ('autovacuum analyze threshold'

, 'autovacuum analyze scale factor');

name | setting
_________________________________ o
autovacuum analyze scale factor | 0.1
autovacuum analyze threshold | 50 alerels
(2 rows) 'HI
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Object statistics dbi

Gathering object statistics J services

Checking for the last (auto)analyze and (auto)vacuum

pgbench PSQL> \x
Expanded display is on.

pgbench PSQL> select last vacuum,last autovacuum,last analyze,last autoanalyze

from pg stat _all tables where relname = 'pgbench accounts';

—~[ RECORD 1 J==———d—m——mm—mm oo

last vacuum | 2019-03-14 01:13:41.070397+00
last autovacuum | NULL
last analyze | 2019-03-14 01:13:45.482932+00
last autoanalyze | NULL
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Object statistics dbi s

Gathering object statistics

To manually gather statistics
> Analyze can operate on the table or on the column level

pgbench PSQL> analyze pgbench accounts;
ANALYZE

pgbench PSQL> analyze pgbench accounts(aid) ;
ANALYZE

pgbench PSQL> \h analyze

Command: ANALYZE

Description: collect statistics about a database

Syntax:

ANALYZE [ VERBOSE ] [ table name [ ( column name [, ...] ) ] ]
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> EXPLAIN command
> PREPARE statements
> Skewed data distribution




Execution plan .
EXPLAIN command dbij -erviee

EXPLAIN is the tool to display execution plan and various statistics
> explain is ready to use by default Inside psql
pgbench PSQL> \h explain -- help page of all explain commands

pgbench PSQL> explain select * from tl where a=1;

QUERY PLAN

Index Only Scan using indexl on tl (cost=0.28..8.30 rows=1 width=4)
Index Cond: (a = 1)

> explain with the analyze parameter will execute the statement

pgbench PSQL> explain analyze select * from tl where a=1;

QUERY PLAN
Index Only Scan using indexl on tl (cost=0.28..8.30 rows=1) (actual time=1.625..1.626 rows=1)
Index Cond: (a = 1)
Heap Fetches: 1 . .
Planning Time: 0.092 ms lﬂl
o |

Execution Time: 0.123 ms
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Execution plan .
PREPARE Command db' services

The PREPARE command allows the usage of bind variables

When the same statement is executed over and over again

> Prepare the statement so it is parsed, analyzed, and rewritten only once

> Execution of a prepared statement only requires planning and execution

> Prepared statements only live in the session and are gone once the session ends

How to prepare a statement

pgbench PSQL> prepare my stmt as select * from tl where a = $1;
pgbench PSQL> execute my stmt ('1l');

To remove a prepared statement

pgbench PSQL> deallocate my stmt; I- -ll
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Execution plan dbi

Skewed data distribution | services

When data is unregularly distributed

pgbench PSQL> select a,count(*) from skewed data group by a;

a | count
_____|_ _________
1 | 99990
2 | 1
3 1
4 | 1
5 | 1
6 | 1
7 1
8 | 1
9 | 1
10 | 1

The optimizer should
> For a=1 do a Seq Scan on table skewed data (FULL TABLE SCAN) = =
> For all other values of a, it should use an index scan on (a) 'nl
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Execution plan .
Skewed data distribution dbl services

With litterals it works perfectly because planning time will be executed for each values

pgbench PSQL> explain select * from skewed data where a = 1;

QUERY PLAN

Seq Scan on skewed data (cost=0.00..29167.00 rows=99992 width=37)

Filter: (a = 1)

pgbench PSQL> explain select * from skewed data where a = 2;

QUERY PLAN

Index Only Scan using il on skewed data (cost=0.42..4.44 rows=1l width=4)

Index Cond: (a = 2)

17.10.19
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Execution plan dbi
Skewed data distribution

What about prepared statements, the same :-)

pgbench PSQL> prepare my stmt as select * from skewed data where a = $1;

pgbench PSQL> explain analyze execute my stmt ('1l');

QUERY PLAN

Seq Scan on skewed data (cost=0.00..29167.00 rows=99990 width=6) (rows=99991)
Filter: (a = 1)
Rows Removed by Filter: 9

Planning time: 0.135 ms

Execution time: 217.040 ms

pgbench PSQL> explain analyze execute my stmt ('2');

QUERY PLAN

Index Only Scan using il on skewed data (cost=0.42..8.48 rows=3 width=6) (rows=1l) - -
Index Cond: (a = 2) lﬂl
Planning time: 0.155 ms

Execution time: 0.083 ms

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19




Execution plan
Skewed data distribution

Take care : Generic plans with prepared statements

> Usually a prepared statement is re-planned with every execution

> But after 5 executions when the costs (including planning overhead) is more expensive than a generic plan
> A generic plan will be used

pgbench PSQL> explain analyze execute my stmt ('1l'); -- repeat that 5 times more --
QUERY PLAN
Seq Scan on skewed data (cost=0.00..29167.00 rows=99990 width=37)
(actual time=0.014..231.884 rows=99991 loops=1)

Filter: (a = 1)

pgbench PSQL> explain analyze execute my stmt ('1l');

QUERY PLAN

Index Scan using il on skewed data (cost=0.42..11300.93 rows=33333 width=37) Inl
(actual time=0.115..355.414 rows=99991 loops=1) L o
Index Cond: (a = $1)
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Execution plan .
Skewed data distribution dbl services

Generic plans
> From now on only the generic plan will be used for the lifetime of the prepared statement
>You can see if a generic or custom plan is used in the explain output

> Sx means this is a generic plan

> A custom plan will show the actual value(s)

Solution about our issue?
> Don't use PREPARE statement

Wait for Postgres 12
> New parameter PLAN_CACHE_MODE with the values
> auto (default)

> force_generic_plan “

> force_custom_plan _—_
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Conclusion .
db' services

The most important with Performance Tuning
> To be able to exactly locate the problem

You don’t have to
> Create all kind of table and index types, define each instance parameter

But you have to know
> The available table/index types and how they access data
> \What can be configured at instance/session/query level

Your knowledge is strengthened by

> Documentation

> Tests on small testcases "
> Experience (but experience is linked to one version and one application) “
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Conclusion

o
' services

Which is the main missing performance feature with PostgreSQL ?

It has no Shared Pool, Session information is only cached in the session it self

But using a connection pool, with the only required parallel sessions

The chance to have it cached will be high

dbi InSite PostgreSQL Performance Tuning workshop

° .
> 05-06 November in Nyon (French) d b'
>17-18 December in Zirich (German)

NEW dbi inSite PostgreSQL for Developer workshop will be available soon ! .
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