] l.l-l

LS

.
=
"

B

HE N
e
-

-
H)

I...I.-.I I-I. |
|
.:. I.I.I.I]
| (]
I.. . - .I.I.I.I. .r 1
. ol
l.l -I-
| ll.ll.ll.ll.ll N II.II | | II H u II II Il Il.ll.ll.-- - == - -‘I

T gy ol iy oy e i i, il --'-'-'-'-'-' By iy oy oy e o o " "
' services

How PostgreSQL tuning can profit from 20 years Oracle tuning

About me dbi

' services

Hervé Schweitzer
CTO

Principal consultant

+41 79963 43 67

X herve.schweitzer[at]dbi-services.com
YW @Herveschweitzer
MY Hervé Schweitzer

==:IT-Tage _ DOAG PGConf.DE Swiss PGDay " "' . .

user group

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Who we are

o
' services

The Company

> Founded in 2010 °

> More than 70 specialists . Basel °

> Specialized in the Middleware Infrastructure Delémont Zurich
> The invisible part of IT

. . ©
> Customers in Switzerland and all over Europe Bern

Nyon
@

Our Offer

> Consulting

> Service Level Agreements (SLA)
> Trainings

> License Management

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Agenda i comvee-

1.My story

2.Some tips
3.Database optimizer
4.0Object statistics
5.Execution plan

6.Conclusion

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

My story

My story A cenices

1997 — 1999 Linux Admin/Adabas DBA

1999 — 2003 Oracle DBA (Mainly Database performance Tuning)

2003 -2010 Oracle Senior Consultant (HA-Tuning)

2010—-2018 CTO — Oracle Consultant (HA-Tuning-GoldenGate) — Oracle OCM
2018 —Today CTO — Oracle Consultant / PostgreSQL performance Tuning

Why the switch ?

> The PostgreSQL database is part of our daily business today

> Both RDBMS have many similarities (Linux based, cmdline with scripts)

> Beta and development releases are available without any restriction to test future features
> You can implement what you recently learned © without any licenses issues

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Some tips

> Prompt
> MacOS user

Some tips
Prompt

Default PostgreSQL prompt
> |s terminating with "#"

postgres@dbi-pg :/home/postgres/ [PGl1l] psgl -U postgres postgres
postgres=#

> Hashtag "#" prompt can be confusing, because is also the default Linux ROOT prompt
[root@dbi-pg ~]1#

> Therefore | decided to change it, to an Oracle like prompt to begin with Postgres ©
postgres@dbi-pg :/home/postgres/ [PGll] psgl -U postgres postgres
postgres PSQL> \c test

You are now connected to database "test" as user "postgres".
test PSQL>

test PSQL> first line of multiline code

(test Po0L> second line of multiline code

(test PSQL> ;

How PostgreSQL tuning can profit from 20 years Oracle tuning

17.10.19

Some tips

Prom pt d b' services

How to change the prompt of the Postgres Linux user

>PROMPT1
> Single line code ended by ";"
>PROMPT?2
> Multi line code ended by ";"

]

postgres@dbi-pg :/home/postgres/ [PG111] cat .psqlrc

\set PROMPT1 '$/ PSQL>'
\set PROMPT2 '(%/ PSQL>'

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Some tips s
MacOS user db' T

Backslash on MacOS Without always entering a 3 key combination : Alt + Maj + /
> Install Karabiner-Elements and configure another key combination

® O Karabiner-Elements Preferences

Simple Modifications Function Keys | &gl @ eeliileciifonisi Devices
m Parameters

Enabled rules

Right command + 7 => Backslash(\)

Why this combination
> Because slash is "Shift + 7"

How PostgreSQL tuning can profit from 20 years Oracle tuning

17.10.19

Database optimizer

> QOracle vs PostgreSQL terminologies
> Optimizer flow

> Parsing

> Planning

> Executions

> Optimizer parameter

> The cost model

Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Optimizer

> Transforms the statement

> Evaluates costs for all operation to get costs for several execution plans
> Generate different execution plans

> Choose execution plan with the best (lowest) cost

Oracle and PostgreSQL optimizer are working the same way

Object Statistics

> Required for the optimizer to generate the best access plan with the lowest cost
> Object statistics collect different information
> QOracle and PostgreSQL collect also histograms to identify the content of one columns

Oracle and PostgreSQL Statistics are working the same way

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Buffer Cache

> QOracle buffer cache

> All data blocks are saved into the database buffer cache

With Oracle the memory will be mainly managed from the database

> PostgreSQL Shared buffer cache
> Less blocks are cached, all other data are cache on the OS level (filesystem cache)

With PostgreSQL the memory will be mainly managed from the OS

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Shared Pool

> QOracle Shared Pool
> All dictionary information, executions plans, running information will be cached there

Oracle shared memory is available for existing and new sessions

> PostgreSQL does not have any Shared Pool for the moment
> Session information is only cached in the session it self, nothing is shared cross-session

No Shared Pool exist for PostgreSQL

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Parsing (log parser stats)

> Check the syntax and semantic

> Check access rights

> PostgreSQL also rewrite the SQL and format it into a raw tree format
> With a PREPARE statement this step occurs once

PostgreSQL does a little bit more during parsing time

Optimizing/Planning (log_planner stats)

> Step where the best plan will be generated based on the object statistics

> For Oracle, the rewrite of the SQL is done here

> This step is the Hard Parsing time for Oracle, what not always occurs if available into the SharedPool
> With a Postgres PREPARE statement after 5 executions it will sometimes also bypassed

Oracle does not always need this step(HardParse), if the cursor is still available on the SharedPool

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Database optimizer i ervees
Oracle vs PostgreSQL terminologies

Executing (log_executor stats)
> Executions of the SQL based of the execution plan generated
> During execution the data will be fetched back to the client

Oracle and PostgreSQL executions are working the same way

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Database optimizer
Optimizer flow

SQL Statement

Parse statement Rewrite query

Executing Planning

Execute plan Generate Plan Generate Paths

Object Statistics

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Page 17

Database optimizer

Parsing

Display the parsing time of an SQL statement

> System level
postgres PSQL>
postgres PSQL>
> Session level

postgres PSQL>
postgres PSQL>

> User level
postgres PSQL>

alter system set log parser stats=true;

select pg reload conf();

set log parser_stats=true;

select 1;

alter user HR set log parser_ stats=true;

> Qutput into logfile postgresqgl.log

2018-09-24 22:20:40.887 CEST - 61 - 15900 - [local] - postgres@postgres LOG:

! 0.000004 s user, 0.000019 s system, 0.000021 s elapsed

2018-09-24 22:20:40.887 CEST - 64 - 15900 - [local] - postgres@postgres LOG:

' 0.000003 s user, 0.000013 s system, 0.000016 s elapsed

2018-09-24 22:20:40.887 CEST - 67 - 15900 - [local] - postgres@postgres LOG:

' 0.000000 s user, 0.000002 s system, 0.000002 s elapsed

How PostgreSQL tuning can profit from 20 years Oracle tuning

PARSER STATISTICS

PARSE ANALYSIS STATISTICS

REWRITER STATISTICS

17.10.19

db

[]
' services

Database optimizer .
Planning A =rvees

Display the planner time of an SQL statement
> System level

postgres PSQL> alter system set log planner stats=true;
postgres PSQL> select pg reload conf();
postgres PSQL> select 1;

> Session level

postgres PSQL> set log planner stats=true;
postgres PSQL> select 1;

> User level

postgres PSQL> alter user HR set log planner stats=true;

> Qutput into logfile postgresqgl.log

2018-09-24 22:33:57.789 CEST - 2 - 16055 - [local] - postgres@postgres LOG: PLANNER STATISTICS o o
! 0.000018 s user, 0.000007 s system, 0.000025 s elapsed Inl
2018-09-24 22:33:57.789 CEST - 4 - 16055 - [local] - postgres@postgres STATEMENT: select 1; —

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Database optimizer .
Executions Al servies

Display the executor time of an SQL statement
> System level

postgres PSQL> alter system set log executor_ stats=true;
postgres PSQL> select pg reload conf();
postgres PSQL> select 1;

> Session level

postgres PSQL> set log executor stats=true;

postgres PSQL> select 1;

> User level

postgres PSQL> alter user HR set log _executor stats=true;

> Qutput into logfile postgresqgl.log

2018-01-04 12:02:11.202 CET [7832] STATEMENT: select 1;

2018-01-04 12:02:11.220 CET [2119] LOG: EXECUTOR STATISTICS
2018-01-04 12:02:11.220 CET [2119] DETAIL: ! system usage stats: h
! 0.000025 s user, 0.000000 s system, 0.000024 s elapsed ..

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Database optimizer A -srvee
Optimizer parameter

There are several parameters to control the optimizer's choice to access the data

postgres PSQL> show enable [TAB TAB]

enable bitmapscan enable hashagg enable indexonlyscan enable material
enable nestloop enable sort enable gathermerge enable hashjoin
enable indexscan enable mergejoin enable segscan enable tidscan

postgres PSQL> set enable hashagg=off;

It is not advisable to change these optimizer parameters
> They fake the optimizer estimations
> In fact they massively increase the cost, when turned off
> They are there only for exceptions (bugs)
>When it is really required
> Set a parameter on the session level?
> Set a parameter globally? " "

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Database optimizer .
The cost model dbj sess

There are several parameters that control cost calculations

Parameter Description Default Value
seq_page_cost The cost of one (sequential) page fetch from disk 1
random_page cost The cost of one random page fetch from disk 4

cpu_tuple_ cost The cost of processing each row 0.01
cpu_index_tuple cost The cost of processing each index entry 0.005
Cpu_operator cost The cost of processing each operator or function 0.0025

> Everything is relative to seq_page cost

>When you are on SSDs: |Is the cost of a random scan still 4 times as expensive as a sequential scan?
> Try to tune the random_page_cost parameter

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Obiject statistics

> Statistics overview

> pg_class

> pg_stats

> Gathering object statistics

Object statistics dbi s

Statistics overview

Used to provide statical information about the data in a relation
> Numbers of rows

> Numbers of blocks

> Numbers of distinct values/nulls for a column
> The average rows width

> The most common values and their frequency
> Histogram bounds

Use catalog tables and views to get object statistics
> pg_class
> pg_stats

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Object statistics dbi s

pg_class

To check statistics on the table level

pgbench PSQL> select relname, relpages,reltuples::int, reltuples/relpages avgtuple
from pg class

where relname = 'pgbench accounts';

relname relpages reltuples avgtuple

pgbench accounts 163935 10000000 60.9997865007472
>relpages : Number of 8K block
> reltuples : Number of rows
> avgtupl : Number of rows per block

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Object statistics e
o stats Al ==viee-

To check statistics on a column level

pgbench PSQL> select tablename,attname,null frac,avg width,n distinct

from pg_stats

where tablename = 'pgbench accounts';
			I	
tablename	attname	null frac	avg width	n distinct
			I	
pgbench accounts	aid	0	4	-1
pgbench accounts	bid	0	4	100
pgbench accounts	abalance	0	4	1
pgbench accounts	filler	0	85	1
l l l l				
>attname : Column name
>null_frac : Fraction of column entries that are null 'ﬂl
>avg_width : Average width in bytes of column's entries = .

>n_distinct : Number of distinct values (but negative values can exist, Ex. -1 indicates a unigue column)

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Object statistics dbi s

pg_stats - Histograms

Most common values and their frequency per column

pgbench PSQL> select most common vals,most common freqs

from pg _stats where tablename = 'pgbench accounts' and attname = 'bid';
-[RECORD 1]--

most common vals | {21,68,88,25,14,53,58,61,7,44,35..
most common fregs | {0.0119667,0.0117667,0.0115,0.0114333,0.0114,0.0113333..

> The value of 21 has a frequency of 0.0119667
> The value of 68 has a frequency of 0.0117667

> The formula to calculate the frequency: count(value)/total rows

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Object statistics dbi s

pg_stats - Histograms

histogram_bounds

pgbench PSQL> select histogram bounds

from pg _stats where tablename = 'pgbench accounts' and attname = 'aid';

-[RECORD 1]--
histogram bounds | {12,103238,213931,305537,410681,503952,610274,703390,801506,918762 ..

> These are groups of approximately the same number of values
> 103238-12 =103226
> 213931-103238 = 110693
> 305537-213931 = 91606
> The values in most_common_vals, if present, are omitted from this histogram calculation
>When the column data type does not have a "<" operator this column is null o«

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Object statistics dbi
pg_stats - Example

histogram_bounds - example

pgbench PSQL> select a,count(*) from tl group by a order by count(*);

1000
2000
2000

pgbench PSQL> select histogram bounds from pg stats where tablename = 'tl1';

histogram bounds

{1,2}
pgbench PSQL> select most_common vals,most common freqs from pg stats where tablename = 'tl1';
most common vals | most common freqgs
__________________ _|____________________________
o o
{4,5,3} | {0.39984,0.39984,0.19992} lﬂl
o o

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Object statistics .
Gathering object statistics di s

The formula when autovacuum kicks in to gather statistics

vacuum threshold = autovacuum analyze threshold
+ autovacuum analyze scale factor

* pg_class.reltuples

The default configuration

pgbench PSQL> select name,setting from pg settings
where name in ('autovacuum analyze threshold'

, 'autovacuum analyze scale factor');

name | setting
_________________________________ o
autovacuum analyze scale factor | 0.1
autovacuum analyze threshold | 50 alerels
(2 rows) 'HI

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Object statistics dbi

Gathering object statistics J services

Checking for the last (auto)analyze and (auto)vacuum

pgbench PSQL> \x
Expanded display is on.

pgbench PSQL> select last vacuum,last autovacuum,last analyze,last autoanalyze

from pg stat _all tables where relname = 'pgbench accounts';

—~[RECORD 1 J==———d—m——mm—mm oo

last vacuum | 2019-03-14 01:13:41.070397+00
last autovacuum | NULL
last analyze | 2019-03-14 01:13:45.482932+00
last autoanalyze | NULL

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Object statistics dbi s

Gathering object statistics

To manually gather statistics
> Analyze can operate on the table or on the column level

pgbench PSQL> analyze pgbench accounts;
ANALYZE

pgbench PSQL> analyze pgbench accounts(aid) ;
ANALYZE

pgbench PSQL> \h analyze

Command: ANALYZE

Description: collect statistics about a database

Syntax:

ANALYZE [VERBOSE] [table name [(column name [, ...])]]

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Execution plan

> EXPLAIN command
> PREPARE statements
> Skewed data distribution

Execution plan .
EXPLAIN command dbij -erviee

EXPLAIN is the tool to display execution plan and various statistics
> explain is ready to use by default Inside psql
pgbench PSQL> \h explain -- help page of all explain commands

pgbench PSQL> explain select * from tl where a=1;

QUERY PLAN

Index Only Scan using indexl on tl (cost=0.28..8.30 rows=1 width=4)
Index Cond: (a = 1)

> explain with the analyze parameter will execute the statement

pgbench PSQL> explain analyze select * from tl where a=1;

QUERY PLAN
Index Only Scan using indexl on tl (cost=0.28..8.30 rows=1) (actual time=1.625..1.626 rows=1)
Index Cond: (a = 1)
Heap Fetches: 1 . .
Planning Time: 0.092 ms lﬂl
o |

Execution Time: 0.123 ms

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Execution plan .
PREPARE Command db' services

The PREPARE command allows the usage of bind variables

When the same statement is executed over and over again

> Prepare the statement so it is parsed, analyzed, and rewritten only once

> Execution of a prepared statement only requires planning and execution

> Prepared statements only live in the session and are gone once the session ends

How to prepare a statement

pgbench PSQL> prepare my stmt as select * from tl where a = $1;
pgbench PSQL> execute my stmt ('1l');

To remove a prepared statement

pgbench PSQL> deallocate my stmt; I- -ll

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Execution plan dbi

Skewed data distribution | services

When data is unregularly distributed

pgbench PSQL> select a,count(*) from skewed data group by a;

a | count
_____|_ _________
1 | 99990
2 | 1
3 1
4 | 1
5 | 1
6 | 1
7 1
8 | 1
9 | 1
10 | 1

The optimizer should
> For a=1 do a Seq Scan on table skewed data (FULL TABLE SCAN) = =
> For all other values of a, it should use an index scan on (a) 'nl

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Execution plan .
Skewed data distribution dbl services

With litterals it works perfectly because planning time will be executed for each values

pgbench PSQL> explain select * from skewed data where a = 1;

QUERY PLAN

Seq Scan on skewed data (cost=0.00..29167.00 rows=99992 width=37)

Filter: (a = 1)

pgbench PSQL> explain select * from skewed data where a = 2;

QUERY PLAN

Index Only Scan using il on skewed data (cost=0.42..4.44 rows=1l width=4)

Index Cond: (a = 2)

17.10.19

How PostgreSQL tuning can profit from 20 years Oracle tuning

Execution plan dbi
Skewed data distribution

What about prepared statements, the same :-)

pgbench PSQL> prepare my stmt as select * from skewed data where a = $1;

pgbench PSQL> explain analyze execute my stmt ('1l');

QUERY PLAN

Seq Scan on skewed data (cost=0.00..29167.00 rows=99990 width=6) (rows=99991)
Filter: (a = 1)
Rows Removed by Filter: 9

Planning time: 0.135 ms

Execution time: 217.040 ms

pgbench PSQL> explain analyze execute my stmt ('2');

QUERY PLAN

Index Only Scan using il on skewed data (cost=0.42..8.48 rows=3 width=6) (rows=1l) - -
Index Cond: (a = 2) lﬂl
Planning time: 0.155 ms

Execution time: 0.083 ms

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Execution plan
Skewed data distribution

Take care : Generic plans with prepared statements

> Usually a prepared statement is re-planned with every execution

> But after 5 executions when the costs (including planning overhead) is more expensive than a generic plan
> A generic plan will be used

pgbench PSQL> explain analyze execute my stmt ('1l'); -- repeat that 5 times more --
QUERY PLAN
Seq Scan on skewed data (cost=0.00..29167.00 rows=99990 width=37)
(actual time=0.014..231.884 rows=99991 loops=1)

Filter: (a = 1)

pgbench PSQL> explain analyze execute my stmt ('1l');

QUERY PLAN

Index Scan using il on skewed data (cost=0.42..11300.93 rows=33333 width=37) Inl
(actual time=0.115..355.414 rows=99991 loops=1) L o
Index Cond: (a = $1)

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Execution plan .
Skewed data distribution dbl services

Generic plans
> From now on only the generic plan will be used for the lifetime of the prepared statement
>You can see if a generic or custom plan is used in the explain output

> Sx means this is a generic plan

> A custom plan will show the actual value(s)

Solution about our issue?
> Don't use PREPARE statement

Wait for Postgres 12
> New parameter PLAN_CACHE_MODE with the values
> auto (default)

> force_generic_plan “

> force_custom_plan _—_

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Conclusion

Conclusion .
db' services

The most important with Performance Tuning
> To be able to exactly locate the problem

You don’t have to
> Create all kind of table and index types, define each instance parameter

But you have to know
> The available table/index types and how they access data
> \What can be configured at instance/session/query level

Your knowledge is strengthened by

> Documentation

> Tests on small testcases "
> Experience (but experience is linked to one version and one application) “

How PostgreSQL tuning can profit from 20 years Oracle tuning 17.10.19

Conclusion

o
' services

Which is the main missing performance feature with PostgreSQL ?

It has no Shared Pool, Session information is only cached in the session it self

But using a connection pool, with the only required parallel sessions

The chance to have it cached will be high

dbi InSite PostgreSQL Performance Tuning workshop

° .
> 05-06 November in Nyon (French) d b'
>17-18 December in Zirich (German)

NEW dbi inSite PostgreSQL for Developer workshop will be available soon ! .

How PostgreSQL tuning can profit from 20 years Oracle tuning

17.10.19

O
d b' services |..“|

GETTIMG
GREAT
FEOFLE
TOGETHER

.ll.ll.ll.ll.ll.Il.ll.ll.ll.ll.Il.ll.ll.ll.ll.ll.ll.
.I..I..l..I..I..I..l..l..l..l..l.-l..l..l..l..l .I. | .I. I..l..l..I..I..l..I..I..I..l..l..ll.l..l..l..l.

