Deploy your own
replication system
with Wal2json

PGCONF.EU 2019

Mai PENG

17/10/2019

Hello

Mai Peng , DBA @webedia movies pro
Data operations : migrations

Detect bottleneck latency

Find solutions for Fast Data Processing

maily.peng@webedia-group.com

Twitter:@mlypeng

webedia

WITH PASSION

Webedia Movies

WEBEDIA MOVIES is the first digital platform dedicated to cinema and
series in France and 4 other countries : 14 millions visitors per month.

Social media interactions is one of the new marketing strategy

More interactive means : more rates on media, more reviews, links to
third social media like Facebook, Instagram.

Convert our previous social platform into a more transactional
architecture, speed up the response of any interaction.

webedia

WITH PASSION

Why this topic ?

=> Allocine is using this replication stack after months of issues

-> Few people use Wal2Json : it's an opportunity to exchange about our
project

-> Now the solution is deployed on all over our movies websites

-=> It’'s relevant to share our feedback and discuss!

webedia

WITH PASSION

Agenda

Problem statement
Capture the data Change as Near to REAL-TIME

Message Queuing: Write data events quickly to ElasticSearch

It works !

Conclusion

webedia

WITH PASSION

Webedia Movies : the tech

-> Aserver side rendered Website on premise(not in cloud)
Built in Symfony and React
€ Consuming a GraphQL api written in Symfony
e Using data from PostgreSQL database
e Using Redis for caching
e Using Elastic Search for filtering and ordering

Symfony @ i '

o elastic
webedla

WITH PASSION

Issues: Time consuming and load

- -> PG and ES are not sync : new
, Ebs;,dld PrtoGrpral data written on PG are replicated

............. to ES in minutes.

smy => To much queries for new data on

Cron
@ jobs O «—> @ @ «—> Visitors PG

Public Websites . .
-> Big transactions generate

LOADS, long queries and locks
on database
GraphQL had to querie
PostgreSQL for data changes

webedia

WITH PASSION

Constraints

-> Every user interactions has to be written to pg and to ES in
milliseconds

-> We do not want performance overhead on our database:
less queries, or only queries with pk=> use indexes

-> Make the replication between PG to ES the more
transactional as possible.

-> Keep PostgreSQL and ElasticSearch in sync for coherency

webedia

WITH PASSION

Whole system not WAL system

WALPARSER |

into MO messages and publish

them

.

CONSUMER

CONSUMER n

Subscriber 2

== 1
Insert] Logical o WAL2JSON JSON %
Update 1 decoding Flopioation siok fitler WAL an schema ar type of oulput e O Dulpol tieres
Delete :] ops and create JSON cbject
% mea Write Ahead Log
[CONSUMER
read MQ messages and .
create avent for each messace Subscriber 1
Measage queue

oK

L1t

webedia

WITH PASSION

Agenda

Problem statement
Capture the data Change as Near to REAL-TIME

Message Queuing: Write data events quickly to ElasticSearch

Conclusion

webedia

WITH PASSION

v

il

Write Ahoad Log

Logical
decoding

— [Replication slot

WAL2JSON

fiter WAL on schema or type of
ops and create JSON object

JSON
output

WALPARSER |

S @y,
read JSON output, turns

into MQ messages and publish

them

webedia

WITH PASSION

Logical decoding basis

Master

Logical Decoding added in PostgreSQL 9.4

Extracts information from Write-Ahead Log into logical
changes (INSERT/UPDATE/DELETE)

Concurrent transactions are decoded in commit order

Achieved by creating a replication slot with a plugin to
produce data for a receiver

webedia

WITH PASSION

Logical Replication slot

>

-

e 2

A “pipe” that give a continuous stream of logical change
Keep track of the replication

Changes are decoded row by row, even if they were produced by a
single command

it controls the amount of WAL to be kept at the server : Be careful !

webedia

WITH PASSION

Once a slot is created...

=> ...no WAL records are cleaned up until they are no longer required.
This means that if you create a slot but no client ever connects...
=> Or if your output plugin is crashing
... no WAL records are ever cleaned up

webedia

WITH PASSION

pg_recviogical

=> Controls logical decoding replication slots and streams data from
replication slots

=> It sends replay confirmations for data as it receives it

- Unnecessary changes can be filtered out

pg_recvlogical -h ['host'] -d ['dbname'] -p ['port’] --slot ['name_slot] -U
['user'] --start add-tables=social.* -0 include-types=0 -0

include-timestamp=true

WITH PASSION

Wal2json the output plugin

=> The plugin have access to tuples produced by INSERT and UPDATE

= UPDATE/DELETE old row versions can be accessed depending on the
configured replica identity

=> Produces a JSON object per transaction. All of the new/old tuples
are available in the JSON obiject.

=> https://github.com/eulerto/wal2json

webedia

WITH PASSION

Wal2Json set up: postgres conf

shared_preload_libraries = 'wal2json’ ()

wal_level = logical
max_wal_senders =
max_replication_slots =

1 =>loads the wal2json logical decoding plug-in

2 =>uses logical decoding with the write-ahead log

3 =>uses a maximum of 4 separate processes for processing WAL changes

4 =>should allow a maximum of 4 replication slots to be created for streaming WAL

changes
webedia

WITH PASSION

Wal2Json ready

> Create a slot named test_slot for the database named test, using the logical
output plug-in wal2json

pg_recvlogical -d test --slot test_slot --create-slot -P wal2json

- Begin streaming changes from the logical replication slot test_slot for the
database test

pg_recvlogical -d test --slot test_slot --start -o pretty-print=1 -f -

webedia

WITH PASSION

Wal2Json output

>

Perform some basic DML operations at test_table to trigger
INSERT/UPDATE/DELETE change events

test=
INSERT
test=

UPDATE
test=
DELETE

Wal2Json produces a Json object per transaction :Output for INSERT event
{

"change": [
{
"kind":
"schema": "
"table":

"columnnames" :
"columntypes": [“chare 8)", "character(10)"],
"columnvalues": i ", "code1l "1

webedia

WITH PASSION

Wal2Json output

> Output for UPDATE event
{

"change": [
{
"kind": "update",
"schema" :
“"table": "test_table",

1

"columnnames": ["id", ;
"columntypes": [“character)", "character(10)"],

"columnvalues": ["id1 " "code2 Y|
"oldkeys": {

"keynames": ["id"],

"keytypes": ["character(10)"],

"keyvalues": ["id1 =]

webedia

WITH PASSION

Wal2Json output

- Output for DELETE event

"change": [
{
"kind": "delete",
"schema": "public”,
“table": "test_table",
"oldkeys": {

"keynames": ["id"],
"keytypes": [“character(10)"],
"keyvalues": ["id1 "]

weoedia

WITH PASSION

A word of caution

-> Big transactions issues (more than 1GB of memory)

= Wal2Json can not handle too big transaction unless the use of option
write-in-chunks but the json is not well formed

-> pg_recvlogical pass from streaming state to catchup state
-> The master might run out of disk space

=> NEVER use replication slots without monitoring

webedia

WITH PASSION

Monitoring interfaces

pg_stat_replication
pg_replication_slots
pg_stat_activity
Exemple of check :

N 28K 27

SELECT 1

FROM pg_replication_slots s

INNER join pg_stat_replication r on s.active_pid=r.pid
WHERE r.state='streaming’

AND s.slot_name = 'wal_parser'
AND s.active_pid is not null
AND confirmed_flush_Isn is not null;

webedia

WITH PASSION

WalParser command

=> Aservice that uses pg_recvlogical to
€ Create a replication slot using the plugin output Wal2Json
€ Start streaming changes from this replication slot

=> Read the Json output, and turns them into MQ messages

- Sends the message to the queue

webedia

WITH PASSION

Agenda

Message Queuing: Write data events quickly to ElasticSearch

webedia

WITH PASSION

[WAL2JSON WALPARSER |
1 Logical o JSON %
[:] deoodlng Rep"camn w fitler WAL on schema or type of Outpul s8ad (DO butpul, tiara
: ops and create JSON cbject koM mos:hnqas ol publish
Write Ahead Log
2
f i CONSUMER f
read MQ messages and F j
create event for cach messace
OK
i : .
: [suvseriern]|
CONSUMER n
J

webedia

WITH PASSION

n n 7
", /l‘ | {

\ |

\/ |
VAN)

RabbitMg EaRabbit

-> RabbitMQ is a message broker
-> It acts as a middleman
€ Reduces loads and delivery times by delegating resource-heavy tasks to a
third party

Publish BROKER Consume

PRODUCER
& RabbitMQ

Subscribe

-> multiple consumers can retrieve the message in parallelism
=> The sender and receiver have low coupling

webedia

WITH PASSION

Benefits of using ElasticSearch

=> Manages the huge amount of data
=> Direct, Easy and Fast access

=> Scalability of the search Engine

webedia

WITH PASSION

Consumers and Subscribers

MASTER
Consumer

|
i m,

_ CONSUMER
Paralellism

read MQ messages and
Measage queue create event for each meseana

| CONSUMER

F

COMPONENT
EVENT DISPATCHER

CONSUMER n

@,

social.user_has_rating.insert

/

|y social.user_has_action.delete

\ocial.user_has_review.update

_Subscriber 2
Subscriber 3

- @y

webedia

WITH PASSION

It works

@ Firefox Fichier Edition Affichage Historique Marque-pages Outils Fenétre Aide

QM1 3 T 100% @3 Lun.17:28 mpeng Q

&% cop 24 con: st | Hownot

<« C @ @ © @ nhttps://mon.allocine.fr/mes-series/mes-series/ . O % v IND e ® =

¢ ALLOCINE Q

Ex. : Joker, Annabelle 3, Star wars 9, Tanguy 2

CINEMA SERIES EMISSIONS NEWS TRAILERS BO. DvD vob Nerrx PQGIRR 0 MoN ALLoCINE

La progression de The Boys a été modifiée

5 MES FILMS MES SERI ES # PARTAGER

MES SERIES
MES COLLECTIONS "
MES SERIES (40) ENVIES DE VOIR =+ AJOUTER DES SERIES
MES CRITIQUES
« ESAYE Derniéres modifications Toutes les séries Toutes les notes

MES CINEMAS

MES PREFERENCES

k% * *

American Horror St Les Sauvages & . Demain nous appar... Marianne
o AVOIR

edia

WITH PASSION

https://docs.google.com/file/d/1M6Ci0sixVtTXJCkrxb3c8_bzH8zKe0GG/preview

Conclusion

-> Logical decoding and Wal2Json are keys:
To output data changes from db to json objects
To generate a message event per action (commit per row)
To reduce database loads

- Small messages are send to an MQ:
Queues keep the order of modifications for single p.k. values
Enables concurrent processing to take place using parallelism

Now social events are written into Elasticsearch in
milliseconds without querying the database.

webedia

WITH PASSION

THANK YOU

Q&A

IIIIIIIIII

