
Copyright©2019 NTT corp. All Rights Reserved.

Partitioning in Postgres
How Far We’ve Come
Amit Langote
NTT OSS Center
PGConf.EU 2019, Milan, Italy

Slides URL: https://amitlan.github.io/files/pgconf-eu-2019.pdf

https://amitlan.github.io/files/pgconf-asia-2019.pdf

Copyright©2019 NTT corp. All Rights Reserved. 2 

About the speaker
• Live and work in Tokyo
• Contribute to community Postgres
• Contributed mainly to the development of declarative partitioning, command

progress reporting, among others. In recent releases, worked primarily on improving
the performance and the scalability of partitioning

Copyright©2019 NTT corp. All Rights Reserved. 3 

Outline
• Partitioning concepts
• Partitioning in Postgres: the “old” way
• The coming of declarative partitioning
• Postgres 10 and 11: foundations
• Postgres 12: performance

Copyright©2019 NTT corp. All Rights Reserved. 4 

Outline
• Partitioning concepts
• Partitioning in Postgres: the “old” way
• The coming of declarative partitioning
• Postgres 10 and 11: foundations
• Postgres 12: performance

Copyright©2019 NTT corp. All Rights Reserved. 5 

Data growth
• Non-trivial applications accumulate and access data, usually with the help of a

database system. As an example, consider an application that allows users to
browse and rent rooms in different cities.

cities rooms bookingsusers

• Irrespective of the data model, data corresponding to certain modeled entities may
grow pretty quickly, which makes the operations on those data slower

Copyright©2019 NTT corp. All Rights Reserved. 6 

Data growth

• Assuming relational model, this means tables for certain entities growing too big for
the current configuration of the database. So for example, actions which require
looking up a user or updating a booking will become slower, because the database
has to process ever growing amount of data unrelated to a given request

users
rooms

cities

bookings

Copyright©2019 NTT corp. All Rights Reserved. 7 

Dealing with data growth
• Up to a point, administrators can get away with various tricks like upgrading the

hardware, configuring more resources for database operation, upgrading database
software to get better performance and so on

users
rooms

cities

bookings

Copyright©2019 NTT corp. All Rights Reserved. 8 

Dealing with data growth: Partitioning
• Another time-tested option is to use partitioning
• What is logically one entity in the application is managed as multiple,

individually-addressable objects in the database system. In our example, the big
users table can be broken down into smaller tables, each containing an
application-defined subset of the data

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

bookings
‘A’ – ‘I’

bookings
‘J’ – ‘R’

bookings
‘S’ – ‘Z’

Copyright©2019 NTT corp. All Rights Reserved. 9 

Partitioning
• Great thing about partitioning is that it allows the application to manipulate only the

partitions of interest. For example, to look up a user whose name starts with ‘A’, the
application may issue the operation to only the relevant partition.

• Partitioning can be defined and implemented entirely in the application code and the
database system only has to deal with multiple smaller tables.

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

bookings
‘A’ – ‘I’

bookings
‘J’ – ‘R’

bookings
‘S’ – ‘Z’

Copyright©2019 NTT corp. All Rights Reserved. 10 

Partitioning
• Or partitioning could be local to the database, that is, the application continues to

refer to the original table name, which is mapped by the database system to its
partitions

• In this approach, the partitioning is still defined by the application code and most of
the functionality implemented in the database.

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

bookings
‘A’ – ‘I’

bookings
‘J’ – ‘R’

bookings
‘S’ – ‘Z’

users

bookings

Copyright©2019 NTT corp. All Rights Reserved. 11 

Partitioning
• Some natively distributed database systems also contain a concept of partitioning

that is wholly database-controlled.
• Such database systems are typically implemented in layers. For example, the layer

that implements data model is separate from the layer that implements storage and
the application typically only interacts with the data model layer

Data model layer (tables, joins, foreign keys, etc.)

Storage layer (compression, replication, partitioning, etc.)

• Partitioning in this case is implemented at the storage layer and may not always be
tunable by the application

Copyright©2019 NTT corp. All Rights Reserved. 12 

Partitioning
There are other benefits to doing partitioning:

• Efficient archiving.

• Parallel processing

bookings
‘A’ – ‘I’
2016

bookings
‘A’ – ‘I’
2017

bookings
‘A’ – ‘I’
2018

bookings
‘A’ – ‘I’

bookings
‘A’ – ‘I’
2019

bookings
bookings

‘A’ – ‘I’
bookings

‘J’ – ‘R’
bookings
‘S’ – ‘Z’

Thread 1 Thread 2 Thread 3

Copyright©2019 NTT corp. All Rights Reserved. 13 

Outline
• Partitioning concepts
• Partitioning in Postgres: the “old” way
• The coming of declarative partitioning
• Postgres 10 and 11: foundations
• Postgres 12: performance

Copyright©2019 NTT corp. All Rights Reserved.

Partitioning in Postgres: the “old” way
• Postgres has long supported in-database partitioning, even though the main

optimization for partitioning came around much later (14 years ago) when such
workloads started appearing in the Postgres wild

• It’s based on table inheritance, a feature to group related tables by making them all
inherit from the same parent table

• Operations on the parent table implicitly affect children, although children can be
operated on directly

users

students professors support_staff

14 

Copyright©2019 NTT corp. All Rights Reserved.

Partitioning in Postgres: the “old” way
• Partitions form a group of related tables (same schema, different subsets of data)
• Parent table acts like an abstract class, whereas partitions contain the actual data
• The application issues operations on the parent table which Postgres internally

applies to the child tables

users

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

15 

Copyright©2019 NTT corp. All Rights Reserved.

Partitioning in Postgres: the “old” way
• Postgres can avoid processing irrelevant child tables with some additional setup
• To do so, the application needs to describe, using a CHECK constraint defined on

each child table, the subset of the total data that the table contains
• If the query’s restrictions contradict the table’s CHECK constraint, it won’t be

scanned
• This feature is called constraint exclusion and is present in Postgres since v8.1

CHECK (id >= ‘A’ AND id <= ‘I’) CHECK (id >= ‘J’ AND id <= ‘R’) CHECK (id >= ‘S’)

users

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

16 

Copyright©2019 NTT corp. All Rights Reserved.

Partitioning in Postgres: the “old” way
• While selecting data from partitions is transparent to the application, inserting isn’t,

that is, data needs to be distributed among partitions using application logic
• It’s typical to use a database trigger – define a trigger on the parent table that catches

any INSERTs done on it and the executed code performs the INSERT on the correct
child table instead of the parent table

17 

Copyright©2019 NTT corp. All Rights Reserved.

Partitioning in Postgres: the “old” way

users

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

CREATE TRIGGER users_insert_redirect
BEFORE INSERT ON users
FOR EACH ROW
EXECUTE PROCEDURE users_insert_redirect()

18 

Copyright©2019 NTT corp. All Rights Reserved.

• The child tables can also be foreign tables (starting in v9.5 released in 2016), so it
allows the partitions to span multiple machines, allowing for a primitive form of
scale-out

19  

Partitioning in Postgres: the “old” way

users

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

FDW FDW FDW

host1.network host2.network host3.network

Copyright©2019 NTT corp. All Rights Reserved.

Partitioning in Postgres: the “old” way
The “old” way gets the job done, but is inefficient in various ways:

• Poor usability, because the application still has to bear most of the responsibility for
making sure that partitioning is set up correctly

• Poor performance, especially as the number of partitions increases, because the
architecture of query processing in Postgres is not really fine-tuned for manipulating
many tables in the handling of a given query

20 

Copyright©2019 NTT corp. All Rights Reserved. 21 

Outline
• Partitioning concepts
• Partitioning in Postgres: the “old” way
• The coming of declarative partitioning
• Postgres 10 and 11: foundations
• Postgres 12: performance

Copyright©2019 NTT corp. All Rights Reserved.

Declarative partitioning
• It’s the same old architecture, but with a new syntax to define partitions
• You, the application developer, are still responsible for deciding what partitions to

create and also for creating them using the new commands (CREATE TABLE +
partition clause)

• Postgres takes care of the rest!
• No need to create CHECK constraints

CHECK (id >= ‘A’ AND id <= ‘I’) CHECK (id >= ‘J’ AND id <= ‘R’) CHECK (id >= ‘S’)

users

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

22 

Copyright©2019 NTT corp. All Rights Reserved.

Declarative partitioning

users

users
‘A’ – ‘I’

users
‘J’ – ‘R’

users
‘S’ – ‘Z’

CREATE TRIGGER users_insert_redirect
BEFORE INSERT ON users
FOR EACH ROW
EXECUTE PROCEDURE
users_insert_redirect()

• There’s no need for the trigger too

23 

Copyright©2019 NTT corp. All Rights Reserved.

Declarative partitioning
• That’s really all there is to the “declarative” qualifier – the new syntax and the

out-of-the-box enforcement of partitioning
• Most of the buzz around declarative partitioning has really to do with getting the stuff

that used to work on normal tables to also work with partitioning, rather than, say,
improving the architecture of partitioning

• The bright side is that Postgres can use partitioning metadata to better optimize
queries over declarative partitions compared to “old”-style partitions, which are
optimized with generic tricks like constraint exclusion

• The number of declarative partitions that can be reasonably handled is also bigger,
because the newly enabled optimizations allow to paper over some architectural
limitations with processing many tables

• Maybe we need to address those fundamental architectural limitations head on, now
more than ever

24 

Copyright©2019 NTT corp. All Rights Reserved. 25 

Outline
• Partitioning concepts
• Partitioning in Postgres: the “old” way
• The coming of declarative partitioning
• Postgres 10 and 11: foundations
• Postgres 12: performance

Copyright©2019 NTT corp. All Rights Reserved.

• Postgres 10 introduced declarative partitioning, with the basics:

– The syntax for RANGE and LIST partitioning

– Commands to “attach”, “detach” partitions

– Multi-level partitioning

– Automatic enforcement of partition constraint

– INSERT and COPY (except for foreign table partitions)

26  

Postgres 10

Copyright©2019 NTT corp. All Rights Reserved.

-- partitioned table

CREATE TABLE users (id text, country text, ...) PARTITION BY RANGE (id);

-- partition (empty)

CREATE TABLE users_a_to_i PARTITION OF users FOR VALUES FROM ('a') TO ('j’);

-- or “attach” existing table as partition

CREATE TABLE users_a_to_i (LIKE users);

COPY users_a_to_i FROM ‘users_a_to_i.csv’ CSV;

ALTER TABLE users ATTACH PARTITION users_a_to_i FOR VALUES IN ('japan');

-- multi-level partitioning

CREATE TABLE users_j_to_r PARTITION OF users FOR VALUES FROM ('j') TO ('s') PARTITION BY LIST
(country);

CREATE TABLE users_j_to_r_japan PARTITION OF users_j_to_r FOR VALUES IN ('japan');

Postgres 10

27  

Copyright©2019 NTT corp. All Rights Reserved.

-- dropping a partition

DROP TABLE users_a_to_i;

-- or “detach” to keep the data in partition around

ALTER TABLE users DETACH PARTITION users_a_to_i;

-- partition constraint

INSERT INTO users_j_to_r_japan VALUES ('jun', 'india');

ERROR: new row for relation "users_j_to_r_japan" violates partition constraint

DETAIL: Failing row contains (jun, india).

Postgres 10

28  

Copyright©2019 NTT corp. All Rights Reserved.

-- insert and copy on partitioned table

INSERT INTO users VALUES ('jun', 'Japan');

COPY users FROM stdin CSV;

>> rin,japan

>> Ctrl-D

SELECT * FROM users_j_to_r_japan;

 name │ country
──────┼─────────
 jun │ Japan
 rin │ japan
(2 rows)

-- partitions must be defined for all anticipated data

INSERT INTO users VALUES ('jun', 'india');

ERROR: no partition of relation "users_j_to_r" found for row

DETAIL: Partition key of the failing row contains (lower(country)) = (india).

Postgres 10

29  

Copyright©2019 NTT corp. All Rights Reserved.

• Setting up partitioning consists of much less chores, when compared with
“old”-style partitioning

• Bulk inserts are at least an order of magnitude faster than with a plpgsql trigger

• Some pretty unintuitive limitations though

– Can’t create indexes, UNIQUE constraints, foreign key constraints, row-level
triggers on partitioned tables, even though they can be defined on the individual
partitions

• No performance improvements over “old”-style for select queries

• Other limitations stem from the expectations that people have developed after
working for many years with the “old”-style partitioning and having to solve a few
issues by themselves, like:

– Transparent handling of cross-partition UPDATE operations

– Automatic creation of partitions for new keys or a “default” partition that would
capture keys for which there is no partition defined

30  

Postgres 10

Copyright©2019 NTT corp. All Rights Reserved.

• A pretty significant release for partitioning

• Most of the restrictions on partitioned table DDL are lifted:

– Indexes can be defined (locally-partitioned indexes)

– UNIQUE constraints can be defined, provided the UNIQUE key includes the
partition key

– Foreign keys can be defined, although foreign keys cannot point to partitioned
tables

– Row-level triggers can be defined

31  

Postgres 11

Copyright©2019 NTT corp. All Rights Reserved.

-- partitioned index

CREATE INDEX ON users (country);

This creates what’s known as locally-partitioned index, meaning the index covers only
the values of a given partition and each partition gets one

\d users_j_to_r_japan

 Table "public.users_j_to_r_japan"

 Column │ Type │ Collation │ Nullable │ Default
─────────┼──────┼───────────┼──────────┼─────────
 name │ text │ │ │
 country │ text │ │ │
Partition of: users_j_to_r FOR VALUES IN ('japan')

Indexes:

 "users_j_to_r_japan_country_idx" btree (country)

Postgres 11

32  

Copyright©2019 NTT corp. All Rights Reserved.

-- needless to say, any future partitions would automatically inherit all indexes

CREATE TABLE users_j_to_r_india PARTITION OF users_j_to_r FOR VALUES IN ('india');

\d users_j_to_r_india

 Table "public.users_j_to_r_india"

 Column │ Type │ Collation │ Nullable │ Default
────────────┼─────────┼───────────┼──────────┼─────────
 id │ text │ │ │
 country │ text │ │ │
 account_id │ integer │ │ │
Partition of: users_j_to_r FOR VALUES IN ('india')

Indexes:

 "users_j_to_r_india_id_idx" btree (id)

-- inherited indexes can’t be dropped, because of course

DROP INDEX users_j_to_r_india_id_idx;

ERROR: cannot drop index users_j_to_r_india_id_idx because index users_j_to_r_id_idx requires it

HINT: You can drop index users_j_to_r_id_idx instead.

Postgres 11

33  

Copyright©2019 NTT corp. All Rights Reserved.

-- UNIQUE constraint

CREATE UNIQUE INDEX ON users (id, country);

Or

ALTER TABLE users ADD CONSTRAINT unique_user_id_country UNIQUE (id, country);

Because the index that underlies the unique constraint is locally-partitioned, it can only
ensure uniqueness at the individual partition level. However, by using the partition key
as the UNIQUE key, global uniqueness is ensured because the partitioning distributes
data into non-overlapping sets, each of which is guarded by a UNIQUE index

-- UNIQUE constraint must include partition keys at all levels

CREATE UNIQUE INDEX ON users(id);

ERROR: insufficient columns in UNIQUE constraint definition

DETAIL: UNIQUE constraint on table "users_j_to_r" lacks column "country" which is part of the
partition key.

Postgres 11

34  

Copyright©2019 NTT corp. All Rights Reserved.

-- FOREIGN KEY constraint

CREATE TABLE accounts (id int, ..., PRIMARY KEY (id));

ALTER TABLE users ADD CONSTRAINT user_account_foreign_key FOREIGN KEY (account_id) REFERENCES accounts;

Although, foreign keys can’t reference partitioned tables.

CREATE TABLE accounts (id int, ..., PRIMARY KEY (id)); PARTITION BY RANGE (id);

ALTER TABLE users ADD CONSTRAINT user_account_foreign_key FOREIGN KEY (account_id) REFERENCES accounts;

ERROR: cannot reference partitioned table "accounts"

Postgres 11

35  

Copyright©2019 NTT corp. All Rights Reserved.

• There are new partitioning features too, such as:

– HASH partitions

– DEFAULT partition (boundless partition)

– Transparent handling of cross-partition UPDATE

– INSERT/COPY to foreign table partitions

36  

Postgres 11

Copyright©2019 NTT corp. All Rights Reserved.

-- hash partitioned table

CREATE TABLE users (id text, country text, ...) PARTITION BY HASH (id);

CREATE TABLE users1 PARTITION OF users FOR VALUES WITH (MODULUS 4, REMAINDER 0) PARTITION BY LIST
(country);

CREATE TABLE users1_japan PARTITION OF users1 FOR VALUES IN ('japan');

-- default partition

CREATE TABLE users1_default PARTITION OF users1 DEFAULT;

CREATE TABLE users2 PARTITION OF users FOR VALUES WITH (MODULUS 4, REMAINDER 1) PARTITION BY LIST
(country);

CREATE TABLE users2_japan PARTITION OF users2 FOR VALUES IN ('japan');

CREATE TABLE users2_default PARTITION OF users2 DEFAULT;

so on...

Postgres 11

37  

Copyright©2019 NTT corp. All Rights Reserved.

-- transparent cross-partition update

insert into users values ('rin', 'japan');

insert into users values ('jun', 'japan');

select tableoid::regclass, * from users;

 tableoid │ id │ country
──────────────┼─────┼─────────
 users2_japan │ rin │ japan
 users3_japan │ jun │ japan
(2 rows)

update users set country = 'india' where id = 'rin';

select tableoid::regclass, * from users;

 tableoid │ id │ country
────────────────┼─────┼─────────
 users2_default │ rin │ india
 users3_japan │ jun │ japan
(2 rows)

Postgres 11

38  

Copyright©2019 NTT corp. All Rights Reserved.

• The following new techniques are now applied when processing queries involving
partitions.

– Partition pruning, supersedes constraint exclusion

– Apply partition pruning during execution, in addition to during planning

– Partition-wise join

– Partition-wise aggregate

39  

Postgres 11

Copyright©2019 NTT corp. All Rights Reserved.

• The usability of the “new” partitioning has far surpassed that of the “old”-style
partitioning with the release of Postgres 11, with new features that would be hard or
outright impossible to emulate with the latter

• However, as noted earlier, the basic architecture that’s being used hasn’t changed
much, which limits the number of partitions that can be used to somewhere around
low 100s, because any given query would need to touch them all

• This results in an unacceptable performance, especially for point queries on
partitioned tables, which are ideally handled by touching only the relevant partitions

40  

Postgres 11

Copyright©2019 NTT corp. All Rights Reserved. 41 

Outline
• Partitioning concepts
• Partitioning in Postgres: the “old” way
• The coming of declarative partitioning
• Postgres 10 and 11: foundations
• Postgres 12: performance

Copyright©2019 NTT corp. All Rights Reserved.

• Although a lot of effort was focused on refactoring the partitioning code base to
reduce partitioning overheads for common operations, a bunch of new features
have landed:

– Foreign keys can now reference partitioned tables

– Partition bound syntax now allows specifying arbitrary expressions, in addition
to just literal values that the earlier syntax allowed

– More intuitive handling of tablespace assigned to partitioned tables

– psql commands for better listing of partitions

– Collection of functions to introspect partition hierarchy

42  

Postgres 12

Copyright©2019 NTT corp. All Rights Reserved.

-- FOREIGN KEY referencing a partitioned table

CREATE TABLE accounts (id int, ..., PRIMARY KEY (id)); PARTITION BY RANGE (id);

ALTER TABLE users ADD CONSTRAINT user_account_foreign_key FOREIGN KEY (account_id) REFERENCES accounts;

-- partition bound can by any expression

CREATE TABLE sensors (id text) PARTITION BY LIST (id);

CREATE TABLE sensor1 PARTITION OF sensors FOR VALUES IN ('sense_' || nextval('sensor_next_id'));

CREATE TABLE sensor2 PARTITION OF sensors FOR VALUES IN ('sense_' || nextval('sensor_next_id'));

\d+ sensors

Partition key: LIST (id)

Partitions: sensor1 FOR VALUES IN ('sense_1'),

 sensor2 FOR VALUES IN ('sense_2')

-- In v11 and earlier

CREATE TABLE sensor1 PARTITION OF sensors FOR VALUES IN ('sense' || nextval('sensor_next_id'));

ERROR: syntax error at or near "||"

LINE 1: ...nsor1 PARTITION OF sensors FOR VALUES IN ('sense' || nextval...

 ^

Postgres 12

43  

Copyright©2019 NTT corp. All Rights Reserved.

-- tablespace and partitioning

CREATE TABLESPACE tmpspace LOCATION '/tmp/pg-sensor-parts';

ALTER TABLE sensors SET TABLESPACE tmpspace;

CREATE TABLE sensor3 PARTITION OF sensors FOR VALUES IN ('sense_' || nextval('sensor_next_id'));

\d sensor3

...

Partition of: sensors FOR VALUES IN ('sense_3')

Tablespace: "tmpspace"

-- In v11 and earlier

ALTER TABLE sensors SET TABLESPACE tmpspace;

CREATE TABLE sensor3 PARTITION OF sensors FOR VALUES IN ('sense_3');

\d sensor3

...

Partition of: sensors FOR VALUES IN ('sense_3')

Postgres 12

44  

Copyright©2019 NTT corp. All Rights Reserved.

\dP

 List of partitioned relations

 Schema │ Name │ Owner │ Type │ Table
────────┼──────────────────────┼───────┼───────────────────┼───────
 public │ sensors │ amit │ partitioned table │
 public │ users │ amit │ partitioned table │
 public │ users_id_country_idx │ amit │ partitioned index │ users
(3 rows)

\dPt

List of partitioned tables

 Schema │ Name │ Owner
────────┼─────────┼───────
 public │ sensors │ amit
 public │ users │ amit
(2 rows)

\dPi

 List of partitioned indexes

 Schema │ Name │ Owner │ Table
────────┼──────────────────────┼───────┼───────
 public │ users_id_country_idx │ amit │ users
(1 row)

Postgres 12

\dt
 List of relations
 Schema │ Name │ Type │ Owner
────────┼────────────────────┼─────────────────
──┼───────
 public │ sensor1 │ table │ amit
 public │ sensor2 │ table │ amit
 public │ sensor_next_id │ sequence │ amit
 public │ sensors │ partitioned table │ amit
 public │ users │ partitioned table │ amit
 public │ users_a_to_i │ table │ amit
 public │ users_j_to_r │ partitioned table │ amit
 public │ users_j_to_r_india │ table │ amit
 public │ users_j_to_r_japan │ table │ amit
(9 rows)

45  

Copyright©2019 NTT corp. All Rights Reserved.

-- partitioning introspection functions: pg_partition_root, pg_partition_ancestors, pg_partition_tree

SELECT relid::regclass AS table,

 parentrelid::regclass AS parent,

 CASE isleaf WHEN true THEN 'yes' ELSE 'no' END AS leaf,

 level,

 pg_partition_root(relid) AS root,

 ARRAY(SELECT pg_partition_ancestors(relid)) AS ancestors

FROM pg_partition_tree('users')

ORDER BY leaf;

 table │ parent │ leaf │ level │ root │ ancestors
───────────┼────────┼────┼────┼────┼──────────────────────
 users │ │ no │ 0 │ users │ {users}
 users_j_to_r │ users │ no │ 1 │ users │ {users_j_to_r,users}
 users_a_to_i │ users │ yes │ 1 │ users │ {users_a_to_i,users}
 users_j_to_r_japan │ users_j_to_r │ yes │ 2 │ users │ {users_j_to_r_japan,users_j_to_r,users}
 users_j_to_r_india │ users_j_to_r │ yes │ 2 │ users │ {users_j_to_r_india,users_j_to_r,users}
(5 rows)

Postgres 12

46  

Copyright©2019 NTT corp. All Rights Reserved.

• ATTACH PARTITION command no longer blocks queries, which makes adding new
partitions a less disruptive operation than before, a huge operational plus

• Performance has been improved significantly by rewriting various pieces of code to
process only the partitions that are needed by a query. So where previously,
single-record queries would run in the amount of time that is proportional to the
number of partitions, that is no longer the case.

• COPY on partitioned tables couldn’t use certain low-level optimizations like
per-partition row-buffering, which has been fixed. That boosts COPY’s
performance significantly when loading ordered data into range-partitioned tables,
for example.

• Planner can now avoid doing explicit sorts for queries that need ordered data from
certain partitioned tables, mainly range partitioned tables.

47  

Postgres 12

Copyright©2019 NTT corp. All Rights Reserved.

• Partitioning is not panacea
• There’s a chance that you might “what have I done?!”
• Read up on best practices:

5.11.6. Declarative Partitioning Best Practices
https://www.postgresql.org/docs/current/ddl-partitioning.html#DDL-PARTITIONING-DECLARATIVE-BEST-PRACTICES

“The choice of how to partition a table should be made carefully as the performance of
query planning and execution can be negatively affected by poor design.”

Last but not least

https://www.postgresql.org/docs/current/ddl-partitioning.html#DDL-PARTITIONING-DECLARATIVE-BEST-PRACTICES

Copyright©2019 NTT corp. All Rights Reserved.

• It wouldn’t be totally inappropriate to say that say that Postgres has decent
partitioning at this point, but there’s always more to be done ☺

• Many people have recently wished to see partition creation itself be automated

• Global indexes on partitioned tables

• Teach planner to consider partitioned indexes

• Optimizing for non-single-record queries

• Improve partitioning in scale-out clusters, from both usability and performance
standpoints

49  

Future enhancements

Copyright©2019 NTT corp. All Rights Reserved.

In this talk, the following topics were covered:

• Partitioning concepts

• The “old” Postgres partitioning

• Declarative partitioning

• Timeline of declarative partitioning features

• Future enhancements

50  

Summary

Copyright©2019 NTT corp. All Rights Reserved.

• For listening to this talk ☺
• To Postgres developers for writing code, reviewing code, reporting feedback/bugs

related to partitioning ☺
• Questions?

51  

Thank you!

