
postgrespro.ru

The present 
and future of 

VACUUM and
Autovacuum

Akenteva Anna
Postgres Professional

2

Overview

1. The role of VACUUM and Autovacuum
2. Issues and workarounds
3. Future prospects

3

1. The role of 
VACUUM and Autovacuum

4

Types of VACUUM

Main operations:
 VACUUM FULL (or CLUSTER)
 VACUUM
 VACUUM FREEZE
 VACUUM ANALYZE

5

What is the purpose?

Vacuuming:
Cleans out dead rows (VACUUM)
Keeps database functional (FREEZE)
Updates info about relations (ANALYZE)

Autovacuum: makes vacuuming happen regularly

For more details: postgresql.org/docs/12/routine-vacuuming.html

https://www.postgresql.org/docs/12/routine-vacuuming.html

6

VACUUM cleanup

7

VACUUM cleanup

8

VACUUM cleanup

9

VACUUM cleanup

Dead tuples
get removed 

from index too

10

VACUUM cleanup

Index cleanup:

1) Scan heap 
2) Vacuum index 
3) Vacuum heap

11

VACUUM cleanup

Image source: http://dtrace.org/blogs/dap/2019/05/22/
visualizing-postgresql-vacuum-progress/

Index cleanup:

1) Scan heap 
2) Vacuum index 
3) Vacuum heap

http://dtrace.org/blogs/dap/2019/05/22/visualizing-postgresql-vacuum-progress/
http://dtrace.org/blogs/dap/2019/05/22/visualizing-postgresql-vacuum-progress/
http://dtrace.org/blogs/dap/2019/05/22/visualizing-postgresql-vacuum-progress/

12

VACUUM FULL cleanup

Before VACUUM
After CLUSTER  

or VACUUM FULL

(index gets rebuilt)

Can be only
run manually

After VACUUM

13

VACUUM FULL cleanup

Before VACUUM
After CLUSTER  

or VACUUM FULL

(index gets rebuilt)

You can specify
the fillfactor

After VACUUM

14

VACUUM:
 Makes space for new INSERTs
 Doesn’t reduce relation size on disk (usually)

VACUUM FULL / CLUSTER:
 Reduces relation size on disk (usually)
 Can make space for new INSERTs (if fillfactor < 1)
 A heavier operation, can be only launched manually

VACUUM and VACUUM FULL:
summary

15

VACUUM FREEZE
preventing XID wraparound

Each transaction is assigned an ID (XID).
A XID is a 32-bit number.

Without FREEZE, we’d run out of available XIDs.

16

VACUUM FREEZE
preventing XID wraparound

For each XID:

 half the numbers before it is the past
 half the numbers after it is the future

17

VACUUM FREEZE
preventing XID wraparound

18

VACUUM FREEZE
preventing XID wraparound

19

VACUUM FREEZE
preventing XID wraparound

To avoid this, we need to FREEZE old tuples.

20

VACUUM FREEZE:
summary

VACUUM FREEZE:
 Prevents XID wraparound, for which it…
“Freezes” old tuples  
that all running transactions can see 
(marks them as existing in the absolute past)

Runs when needed even if Autovacuum is disabled

21

VACUUM ANALYZE
updating info about relations

Information about relations that should be
periodically collected: data statistics, visibility map.

They affect performance:
 Data statistics: used by the query planner
 Visibility map (VM) speeds up index-only scans

22

VACUUM ANALYZE:
summary

VACUUM ANALYZE:

 Updates visibility map (VM)
 Updates data statistics

Updating statistics can be run separately (ANALYZE)

23

Conclusion

Vacuuming prevents problems:

 Bloat of tables and indexes
 XID wraparound
 Performance degradation

when it’s launched by Autovacuum regularly enough.

24

2. Current issues  
and workarounds

25

Long-running
transactions

A long transaction may prevent tuples from:
 Being cleaned out of the table
 Being frozen

=> try to avoid long-running transactions!

26

Temporary
tables

Issues with temp tables:
 Autovacuum doesn’t work with them
 A backend can only VACUUM its own temp tables
 Long sessions + temp tables => wraparound

How to avoid problems?
 Don’t use temp tables for too long
 …or VACUUM them manually in your app

27

Perfomance
issues

Too many index scans?
 Disable index cleanup, but use REINDEX later

 Increase amount of memory available to workers 
(autovacuum_work_mem, vacuum_work_mem)

VACUUMing uses too much memory?
 Decrease the number of workers
 Decrease the amount of memory available to workers

28

Visibility map 
not getting updated

Automatic VACUUM can only be triggered 
by UPDATEs/DELETEs. INSERTs trigger ANALYZE,
which doesn’t update the visibility map (VM).

This means:
The VM doesn’t get updated after a big INSERT
Append-only tables rarely get visited by VACUUM 
(only to prevent wraparound)

29

Consequences:
VM isn’t updated => degradation of index-only scan

Possible unexpected heavy loads due to

Rare but massive wraparound-preventing VACUUM
SELECT setting hint bits after a big INSERT

Visibility map 
not getting updated

30

Workarounds:
Calling VACUUM or VACUUM FREEZE manually

 After big inserts

 Periodically for append-only tables

VACCUM will update the visibility map, 
FREEZE will help lessen the amount of Autovacuum’s work

Visibility map 
not getting updated

31

Keep in mind: 
VACUUM FULL / CLUSTER don’t create a VM

=> you might want to run VACUUM [ANALYZE] 
after them to create a VM [and update statistics]

Visibility map 
not getting updated

32

Getting stuck
on big relations

What is the problem?
 1 table = 1 autovacuum worker  
=> slow processing of big tables (especially with indexes)

 Vacuuming can be cancelled or interrupted

 It starts from the beginning of the relation each time

 User can’t control the relation order for Autovacuum

33

Getting stuck
on big relations

Which means, big relations might:
 end up never getting fully processed

 block access to other relations

34

Getting stuck
on big relations

Workarounds:
 Reduce bloat by using VACUUM FULL or analogues

 See if you can configure Autovaccum better

 Think of table partitioning 
(https://www.enterprisedb.com/fr/blog/containing-bloat-partitions)

https://www.enterprisedb.com/fr/blog/containing-bloat-partitions

35

Taking 
locks

VACUUM FULL/CLUSTER locks the whole relation.

Workarounds:
 Use alternatives (pg_repack, pgcompacttable)

 See if you can prevent needing VACUUM FULL by:

 Avoiding long-running transactions

 Configuring Autovaccum better

 Using table partitioning

36

3. Future prospects

37

Author: Masahiko Sawada
Link to discussion: commitfest.postgresql.org/25/1774/

More details: pgcon.org/2018/schedule/events/1202.en.html
Issue: vacuuming takes long,
especially on big tables and
tables with many indexes.

Proposed fix: let multiple
processes vacuum one table. 
It will speed up vacuuming, but
consume more I/O and CPU.

Block level
parallel VACUUM

https://commitfest.postgresql.org/25/1774/
https://commitfest.postgresql.org/25/1774/
https://www.pgcon.org/2018/schedule/events/1202.en.html

38

Author: Masahiko Sawada
Link to discussion: commitfest.postgresql.org/25/1774/

More details: pgcon.org/2018/schedule/events/1202.en.html
Issue: vacuuming takes long,
especially on big tables and
tables with many indexes.

Proposed fix: let multiple
processes vacuum one table. 
It will speed up vacuuming, but
consume more I/O and CPU.

Block level
parallel VACUUM

Image by Masahiko Sawada (from the discussion)

https://commitfest.postgresql.org/25/1774/
https://commitfest.postgresql.org/25/1774/
https://www.pgcon.org/2018/schedule/events/1202.en.html

39

Author: Darafei Praliaskouski
Link to discussion: commitfest.postgresql.org/25/2093/

Trigger autovacuum  
on tuple insertion

Issue:  
For append-only tables, VACUUM is invoked 
only when the table gets close to a wraparound.
=> their visibility map gets updated too rarely.
 
Proposed fix:  
Invoke VACUUM based on inserts, not only deletes / updates.
Another option: update visibility map as a separate operation.

https://commitfest.postgresql.org/25/2093/
https://commitfest.postgresql.org/25/2093/

40

Author: Masahiko Sawada
Link to discussion: commitfest.postgresql.org/25/2211/

Resume [auto]vacuum from
interruption and cancellation

Issue:  
long-running vacuum/autovacuum can be cancelled/interrupted. 
Starting from the beginning of the table each time, 
vacuum might not ever reach the end of the table.

Proposed fix:  
Teach vacuum to start on the block it previously ended on.

https://commitfest.postgresql.org/25/2273/
https://commitfest.postgresql.org/25/2273/
https://commitfest.postgresql.org/25/2273/
https://commitfest.postgresql.org/25/2273/

41

Author: Alexander Korotkov
Link to discussion: commitfest.postgresql.org/25/2273/

Write visibility map during
CLUSTER/VACUUM FULL

Issue:  
After CLUSTER / VACUUM FULL, index-only scan can suffer 
due to visibility map not being automatically created.

Proposed fix:  
force CLUSTER and VACUUM FULL to create a visibility map.

https://commitfest.postgresql.org/25/2273/
https://commitfest.postgresql.org/25/2273/

42

Author: Ants Aasma
Link to discussion: commitfest.postgresql.org/25/2302/

Remove size limitations of
vacuums dead_tuples array

Issue:  
Now maintenance_work_mem has an upper limit of 1GB.
Vacuuming large tables may require too many index scans 
due to this limit, even if there’s plenty of memory available.

Proposed fix:  
Raise the upper limit of maintenance_work_mem.

https://commitfest.postgresql.org/25/2273/
https://commitfest.postgresql.org/25/2273/
https://commitfest.postgresql.org/25/2273/
https://commitfest.postgresql.org/25/2273/

43

Zheap:
In-place updates when possible
Uses UNDO log

Zedstore: a column-oriented storage

The need for VACUUM will likely be minimised for them

What about new
storage types?

44

Summary

45

Summary

Hopefully now you know:

Why vacuuming is needed
What issues you might run into
What to look forward to in newer versions of PostgreSQL

…and are motivated to learn more!

46

Links

Documentation: 
https://www.postgresql.org/docs/12/routine-vacuuming.html

Visualisation of VACUUM progress: 
http://dtrace.org/blogs/dap/2019/05/22/visualizing-postgresql-
vacuum-progress/

Details on how VACUUM works: 
http://www.interdb.jp/pg/pgsql06.html

Tuning autovacuum: 
https://www.2ndquadrant.com/en/blog/autovacuum-tuning-basics/

Table partitioning: 
https://www.enterprisedb.com/fr/blog/containing-bloat-partitions

Monitoring and configuring autovacuum 
https://pgconf.ru/en/2018/108354

https://www.postgresql.org/docs/12/routine-vacuuming.html
http://dtrace.org/blogs/dap/2019/05/22/visualizing-postgresql-vacuum-progress/
http://dtrace.org/blogs/dap/2019/05/22/visualizing-postgresql-vacuum-progress/
http://www.interdb.jp/pg/pgsql06.html
https://www.2ndquadrant.com/en/blog/autovacuum-tuning-basics/
https://www.enterprisedb.com/fr/blog/containing-bloat-partitions
https://pgconf.ru/en/2018/108354

47

Akenteva Anna

akenteva.annie@gmail.com

a.akenteva@postgrespro.ru

Thank you!

mailto:akenteva.annie@gmail.com
mailto:a.akenteva@postgrespro.ru

