
Directing
PostgreSQL to
Performance

PostgreSQL Index
improvements over time

Matthias van de Meent

PostgreSQL hacker/contributor
since 2020

Software Engineer at Neon

NOTE:
This presentation will show you some indexes that have no basis in reality.

Do not try to reproduce these in production systems.

What am I covering?
⌾ Included Index AMs on a high level

⌾ Existing, planned and potential future improvements

⌾ Not covering:

○ Profound knowledge of Index AM X

○ Selling Index AM X

○ The existing uses of Index AM X for your database

Refresher

3

2

1

Performance of finding one row by T.uuid is now ~ O(1)

Why do we need indexes?

Add hash index on T.uuid

Performance of finding one row by T.uuid is O(tablesize)

⌾ Improve query times for common access patterns

How do indexes work?
⌾ Table storage is an unorganized HEAP

○ CREATE TABLE ... USING heap

⌾ IO is expensive

⌾ Use the least amount of block accesses to get to your result

○ Inclusion (result is somewhere in there)

○ Exclusion (result is definitely not in there)

⌾ Ordered, tree-structured index

○ Ordered by index key

○ Leaf entries point to heap tuples

⌾ Fan-out of 300+ is common

○ Low tree depth thus few blocks accessed to find value

How do btree indexes work?

How do hash indexes work?
⌾ Hash table

⌾ Can only do equality checks

⌾ Relatively small size, good for point lookups

How do GiST indexes work?
⌾ Tree-structured index

○ Excludes downlinks when not 'consistent'

⌾ Any balanced tree structure: GiST = Generalized Search Tree

How do GIN indexes work?
⌾ Deformed keys

⌾ 'tree of trees'

How do BRIN indexes work?
⌾ Summarized results for key columns

⌾ O(tablesize) index scan

○ BUT: Order(s) of magnitude smaller

⌾ Built to exclude large ranges of data, fast

Important distinctions
⌾ Index size

⌾ Index bloat

○ Tuples: Index contains tuples that point to now-invisible tuples

○ Space: Index uses more pages than strictly necessary

What has
improved?

⌾ Pre-sorting

○ GiST, hash

⌾ Sorting infrastructure

○ All pre-sorted index builds

CREATE INDEX

⌾ Strict tuple ordering ⇒ suffix truncation

○ btree (Anastasia Lubennikova, Peter Geoghegan)

⌾ Deduplication

○ btree (Peter Geoghegan, Heikki Linnakangas)

Has improved: Index size

Suffix truncation

BLCKSZ=1kB

⌾ Strict tuple ordering ⇒ suffix truncation

○ btree (Anastasia Lubennikova, Peter Geoghegan)

⌾ Deduplication

○ btree (Peter Geoghegan, Heikki Linnakangas)

Has improved: Index size

Full btree leaf page

BLCKSZ=1kB

Full btree leaf page + deduplication

BLCKSZ=1kB

⌾ Bottom-up index deletion

○ btree (PG14, Peter Geoghegan)

Has improved: Index bloat

Index bloat:
- Tuples in the index that are invisible to any transaction
- More space used by the index than necessary

What is being
improved?

Index creation
⌾ Improving efficacy of pre-sorts in Hash

○ order by (bucket, hash) instead of only (hash)

VACUUM performance
⌾ new HOTness with BRIN

○ We store no TIDs in BRIN, so there is no need to break HOT for BRIN

(PG15 PG16? Josef Simanek, Tomas Vondra)

⌾ heapam

○ Compacter, more efficient dead tuple storage (Masahiko Sawada)

⌾ nbtree: dynamic prefix compression

Index performance

Rudimentary btree index search
Search for first row < (1, 1, 2, 4)

Rudimentary btree index search
Search for first row < (1, 1, 2, 4):
- < (1, 2, ...)

Rudimentary btree index search
Search for first row < (1, 1, 2, 4):
< (1, 2, ...)
> (1, 1, 2, 3)

Rudimentary btree index search
Search for first row < (1, 1, 2, 4):
< (1, 2, ...)
> (1, 1, 2, 3)
< (1, 1, 2, 4)

Rudimentary btree index search
Search for first row < (1, 1, 2, 4):
< (1, 2, ...)
> (1, 1, 2, 3)
< (1, 1, 2, 4)
< (1, 1, 2, 4)

Rudimentary btree index search
Search for first row < (1, 1, 2, 4):
< (1, 2, ...)
> (1, 1, 2, 3)
< (1, 1, 2, 4)
< (1, 1, 2, 4)
> (1, 1, 2, 3)

Rudimentary btree index search
Search for first row < (1, 1, 2, 4):
< (1, 2, ...)
> (1, 1, 2, 3)
< (1, 1, 2, 4)
< (1, 1, 2, 4)
> (1, 1, 2, 3)

⌾ BRIN minmax-assisted table sort

○ Patch is currently under development (Tomas Vondra)

Index performance

BRIN view of table

BRIN view of table

What could be
improved?

ORDER BY support
⌾ btree_gist:

○ supports ORDER BY myintcol <-> INT_MIN, ...

○ ... but not ORDER BY myintcol

Limiting index bloat
⌾ Apply page split prevention (c.q. nbtree in PG14) in other trees:

○ GIST

○ SP-GiST

○ GIN

Index size
⌾ btree

○ static, on-page prefix truncation

○ highkey truncation support from opclass

○ key normalization

⌾ GIST prefix and suffix truncation

○ mostly in case of multi-column ordered opclasses

Full btree leaf page

BLCKSZ=1kB

Full btree leaf page + static prefix truncation

BLCKSZ=1kB

Full btree leaf page + dedup + static prefix truncation

BLCKSZ=1kB

Thank you!

matthias@neon.tech

