
How to handle 1000 application users

Laurenz Albe

Laurenz Albe

www.cybertec-postgresql.com

● PostgreSQL contributor since 2006

● author of oracle_fdw and other
PostgreSQL related software

● consultant

● trainer

http://www.cybertec-postgresql.com

DATA Science

▪ Artificial Intelligence

▪ Machine Learning

▪ Deep Learning

▪ Big Data

▪ Business Intelligence

▪ Data Mining

▪ Etc.

PostgreSQL Services

▪ 24/7 Support

▪ High Availability

▪ Consulting

▪ Performance Tuning

▪ Clustering

▪ Migration

▪ Etc.

DATABASE SERVICES

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

DATABASE PRODUCTS

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

KUNDEN
BRANCHEN

■ IT

■ universities

■ government

■ automotive

■ industry

■ retail

■ financial

■ and many more

What is this talk about?

● Management of database connections

● connection pooling

● sizing of connection pools

● pitfalls you should avoid

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Problem statement

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Requirements of the applikation

● we have to handle 1000 concurrent application users

● we need many processes/threads to handle that load

● we need several instances of the application server, potentially on
different machines

● each application thread accesses the database frequently

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

The naïve approach

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

The naïve approach
● we open a database connection whenever an application thread needs to

access the database and close the connection when we are done
● very bad idea, because opening database connections is expensive:
○ starts a process on the database server
○ loads catalog tables into a cache
○ authenticates the database user

● if database requests are short, this can consume more than half of the
database server's resources just for establishing connections

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Testing the naïve approach
pgbench with persistent database connections:

$ pgbench -c 5 -T 60 test
tps = 4163.234087

pgbench opens a new connection for each request:

$ pgbench --connect -c 5 -T 60 test
tps = 446.301527

Even with local connections performance is reduced by almost 90%!

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

The “less naïve” approach

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Keep database connections open

● each application thread keeps its database connections open rather than
closing them

● reuse database connections rather than close them

● idea: idle connections don't use many resources

● can lead to thousands of open database connections

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Problems with many open sessions
● idle database connections also affect the performance:
○ slow down the “snapshot” created for each SQL statement
○ this was improved in PostgreSQL v14, but is still relevant

● the number of active (working) database sessions cannot be limited in
PostgreSQL
○ this can overload the database
○ the risk of overload grows with the number of database connections

● if there are many connections, work_mem has to be kept small to avoid
going “out of memory”
○ that is bad for the performance of SQL statements

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Causes of database overload

● CPU is at capacity
○ all SQL statements execute much slower

● disk is at capacity
○ all SQL statements execute much slower
○ I/O-“wait events” like WALSync, DataFileRead, . . .

● internal resource conflicts in the database
○ “wait events” for internal “light-weight locks” like LockManager,
BufferContent, . . .

● wait_events can be monitored with pg_stat_activity

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

An example of database overload

www.cybertec-postgresql.com

(any similarity to existing customer systems is coincidental)

http://www.cybertec-postgresql.com

The example explained

● Statements get stuck behind an ACCESS EXCLUSIVE lock
● “active” connections pile up
● at some point the lock goes away
● the avalanche is turned loose ⇒ CPU spike
● intuition advises:

there are many active connections, so we need to increase the limit
● however, more connections exacerbate the problem

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Fighting database overload
by using a connection pool

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Limiting the connection count

● max_connections is the cluster-wide limit

● ALTER DATABASE|ROLE ... CONNECTION LIMIT n

● error message if the limit is exceeded
⇒ no user-friendly solution

● we would like to limit the number of active database connections
○ not possible in PostgreSQL

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

What is a connection pool?

● a piece of software that keeps a number of database connections open
● client processes grab a connection from the pool and return it to the pool

after use
● if all connections are busy, the client application is suspended
● typically built into the application server, but can also be a standalone

program (pgBouncer)

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Advantages of a connection pool

● connections are kept open
⇒ no waste of resources by opening new connections

● ideal configuration: minimal pool size = maximal pool size
● the number of active database connections is limited

⇒ prevents database overload
● fewer database processes

⇒ more resources for each process
⇒ fewer “context switches” in the CPU

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Pooling strategy “session pooling”

● application thread holds a database connection for its whole life time

● only useful if application threads are short-lived

● no restriction on the available SQL constructs (the state of a session gets
reset when it is returned into the pool)

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Pooling strategy “statement pooling”

● connection is returned to the pool after each statement

● most effective strategy that uses few connections (connections that are
held by an application thread are never idle)

● no multi-statement transactions possible (except when using database
functions)
⇒ limited usefulness

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

pooling strategy “transaction pooling”

● connections are returned to the pool after each database transaction

● the best compromise between efficiency and usability

● cannot be used with SQL constructs whose life time exceeds a database
transaction

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Connection pooling: limitations

● database connections can only be reused for the same database and user
⇒ use only a single database user

● except with session pooling, constructs that live longer than a transaction
cannot be used:
○ temporary tables (workaround: UNLOGGED tables)
○ WITH HOLD cursors (workaround: UNLOGGED tables)
○ prepared statements

● PL/pgSQL functions can be used instead of prepared statements, because
they also cache the execution plans of SQL statements

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Pooling in the application server

● most efficient
● easy to use (most application servers and ORMs have built-in support)
● effective pooling if there is a single application servers (or very few)
● with many application servers you will end up with many pools

⇒ number of active database connections is not limited effectively

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Connection pooling with pgBouncer

● https://www.pgbouncer.org/
● simple software, proxy between client and database
● usually installed on the database machine (local connections)
● fewer features than pgPool, but simpler and more robust
● use it if there is no built-in connection pool or the built-in pool is not

effective (e.g. with many application servers)

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Authentication and pgBouncer

● pgBouncer is a proxy = “man in the middle”
⇒ application authenticates with pgBouncer,

pgBouncer authenticates with PostgreSQL
● password authentication is easy to set up
● TLS certificate authentication is also straightforward

(particularly if pgBouncer runs on the database machine)
● other authentication techniques are complicated

⇒ potential problem with high security requirements

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Sizing the connection pool

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

The problem of sizing

● if the pool is too small, application performance will be bad
● if the pool is too large, the database will be overloaded, and application

performance will also be bad
● pool size usually determined by trial and error

(but we will try to do better!)
● good load tests are a big help

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Limits for active connection count

● the limits are usually determined by the CPU and disk capacity
○ not more active connections than CPU cores
○ not more active connections than parallel I/O requests that the disk can

handle
● database-internal resource conflicts are hard to estimate and will be

ignored here (experience tells that they mostly happen with high numbers
of connections, which we will avoid anyway)

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Accounting for “idle in transaction”

● connections in use by the application are not always “active”
● in-use connections that are idling don't use CPU or disk resources
● we have to figure out the following ratio:

www.cybertec-postgresql.com

active_factor =
connection active time

connection in use time

http://www.cybertec-postgresql.com

Determining active_factor
● easy with the new session statistics in PostgreSQL v14:

 SELECT active_time / (active_time + idle_in_transaction_time)
 FROM pg_stat_database
 WHERE datname = 'mydb'
 AND active_time > 0;

● for a coarse estimate, query pg_stat_activity several times and use
an average:
 SELECT (count(*) FILTER (WHERE state = 'active'))::float8
 / count(*) FILTER (WHERE state in
 ('active', 'idle in transaction'))
 FROM pg_stat_activity
 WHERE datname = 'mydb';

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Determining the ideal pool size

● “num_cores” is the number of CPU cores
● “max_parallel_ios” is the upper limit of concurrent I/O requests that the disk

can handle
● “parallelism” is the average number of server processes used for a single

SQL statement

www.cybertec-postgresql.com

pool size =
min(num_cores, max_parallel_ios)

active_factor × parallelism

http://www.cybertec-postgresql.com

Impact of query duration

● the shorter the statements, the more you can run
● the more statements you can run, the more concurrent application users

your system can handle
⇒ tune queries as good as possible

● keep “idle in transaction” time as short as you can
(otherwise the connection pool is not used effectively)

● avoid long transactions as much as you can (always commendable)

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

The most important points

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Conclusion

● you need a single connection pool

● if you cannot get that from the application server ⇒ pgBouncer

● don't configure the pool size too large

● you can calculate the ideal connection pool size

● short statements and transactions ⇒ many concurrent users

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

Questions

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com

