
TOAST, for breakfast and compression

Who we are

28.10.2022 Page 2TOAST, for breakfast and compression

The Company
>Founded in 2010
>More than 100 specialists
>Specialized in the Middleware Infrastructure

> The invisible part of IT
>Customers in Switzerland and all over Europe

Our Offer
>Consulting
>Service Level Agreements (SLA)
>Trainings
>License Management

About me

28.10.2022 Page 3TOAST, for breakfast and compression

Daniel Westermann
Technology Leader
Principal Consultant

+41 79 927 24 46
daniel.westermann@dbi-services.com
@westermanndanie
Daniel Westermann

mailto:daniel.westermann@dbi-services.com

TOAST, for breakfast and compression 28.10.2022 Page 4

This is TOAST for breakfast

TOAST, for breakfast and compression 28.10.2022 Page 5

... but what is TOAST for compression about?

TOAST, for breakfast and compression 28.10.2022 Page 6

... before we start to talk about TOAST ...

TOAST, for breakfast and compression 28.10.2022 Page 7

... we need to talk about blocks or pages!

TOAST, for breakfast and compression 28.10.2022 Page 8

Blocks / Pages

PostgreSQL (and other databases as well) stores all data in blocks / pages
> Usually, a block is 8kB

> This can be changed when PostgreSQL is compiled from source code
postgres@debian11pg:/home/postgres/postgresql/ [pg16] ./configure --help | grep block
 --with-blocksize=BLOCKSIZE
 set table block size in kB [8]
 --with-wal-blocksize=BLOCKSIZE
 set WAL block size in kB [8]

TOAST, for breakfast and compression 28.10.2022 Page 9

Blocks / Pages

How does a block/page look like?
> https://www.postgresql.org/docs/current/storage-page-layout.html

This is your data

https://www.postgresql.org/docs/14/storage-page-layout.html

TOAST, for breakfast and compression 28.10.2022 Page 10

Items / Rows / Tuples

This leads us to the next question
> What exactly an item / a row / a tuple is made of?

> What is in header data?
> e.g. the transaction IDs which created / deleted the tuple and some more
> https://www.postgresql.org/docs/current/storage-page-layout.html#PAGEHEADERDATA-TABLE

> The more important question here is: What defines the content of a column?
> The data types, which are used for the columns

Tuple header / Metadata Column 1 Column 2 Column 3 Column 4 Column ...

https://www.postgresql.org/docs/14/storage-page-layout.html#PAGEHEADERDATA-TABLE

TOAST, for breakfast and compression 28.10.2022 Page 11

Sizing

This leads us to the next question
> How large can a column become?

> You need to know the data type to answer that!

Tuple header / Metadata Column 1 Column 2 Column 3 Column 4 Column ...

24 bytes ?? bytes ?? bytes ?? bytes ?? bytes ?? bytes

TOAST, for breakfast and compression 28.10.2022 Page 12

Sizing

How do you know what a data type will consume on disk?
> The easy answer is: Check the documentation

> https://www.postgresql.org/docs/current/datatype.html

https://www.postgresql.org/docs/current/datatype.html

TOAST, for breakfast and compression 28.10.2022 Page 13

Sizing

How do you know what a data type will consume on disk?
> You can also ask PostgreSQL directly about the size of a data type, or the complete tuple

> This is an empty tuple or, in other words: the header data

> This is the size of a smallint

postgres=# select pg_column_size (row());
 pg_column_size

 24
(1 row)

postgres=# select pg_column_size (row(0::smallint)) - 24;
 ?column?

 2
(1 row)

TOAST, for breakfast and compression 28.10.2022 Page 14

Sizing

When it becomes more tricky
> Not all data types have a fixed size

> How does this look like?

> This can increase

postgres=# select pg_column_size (row(1.1::numeric)) - 24;
 ?column?

 7
(1 row)

postgres=# select pg_column_size (row(1111111.1111111111::numeric))
 - 24;
 ?column?

 13
(1 row)

TOAST, for breakfast and compression 28.10.2022 Page 15

Tuples in blocks

Multiple items/rows/tuples go into one block

ItemItem

ItemItemItem

Item Item Item Item
Item Item

fillfactor=100%

ItemNo space left...

TOAST, for breakfast and compression 28.10.2022 Page 16

Tuples in blocks

Multiple items/rows/tuples go into one block

fillfactor=100%

Item

New block

TOAST, for breakfast and compression 28.10.2022 Page 17

Tuples in blocks

The more complicated case
> An item arrives which does not fit into the block at all

fillfactor=100%

Item

Item

TOAST, for breakfast and compression 28.10.2022 Page 18

Tuples in blocks

The more complicated case
> PostgreSQL does not allow a row/tuple to span multiple blocks

> There is no concept such as row chaining in Oracle
> This comes with advantages

> Large data only needs to be pulled out when required, the main table stays small
> What happens is

> Depending on the data type (more on that later)
> Compress the row
> Maybe store it outside the block
> Put a pointer in the row/tuple to locate the out of line storage

> TOAST
> The Oversized-Attribute Storage Technique

> or
> the best thing since sliced bread

TOAST, for breakfast and compression 28.10.2022 Page 19

Say goodbye to breakfast

TOAST, for breakfast and compression 28.10.2022 Page 20

Tuples in blocks

In fact, this information so far is not accurate
> An item arrives which does not fit into the block at all

fillfactor=100%

Item

Item

TOAST, for breakfast and compression 28.10.2022 Page 21

Triggering the toaster

In fact, this information is not accurate
> PostgreSQL will try to store at least 4 tuples per block

> src/include/access/heaptoast.h

> This means, with a standard block size of 8kB
> 2000 bytes will trigger the toaster (excluding the header)

> This can be controlled per table

#define TOAST_TUPLES_PER_PAGE 4

postgres=# alter table t set (toast_tuple_target = N);

TOAST, for breakfast and compression 28.10.2022 Page 22

Triggering the toaster

In prosa, the algorithm is
> PostgreSQL will try to store at least 4 tuples per block

> If the new row exceeds one fourth of the block (excluding the header)
> TOAST will kick in

> Loop through all the attributes/columns, which have either external or extended
strategies?

dbi services 26.04.2015 Page 23

External and extended?

TOAST, for breakfast and compression 28.10.2022 Page 24

Storage strategies

There are four different strategies for TOASTing

> Remember: The strategy is on the data type, not the tuple/row!

> Remember: The strategy is on the data type, not the tuple/row!

Strategy Effect

PLAIN Prevents either compression or out-of-line storage; the only option for non-TOAST-able data
types.

EXTENDED Allows both compression and out-of-line storage; first compression, then out-of-line.
EXTERNAL Allows out-of-line storage but not compression.
MAIN Allows compression but not out-of-line storage.

TOAST, for breakfast and compression 28.10.2022 Page 25

Storage strategies

How do I know the strategy of a data type when it comes to toasting?

> Metadata of columns is stored in pg_attribute

postgres=# create table t (a int, images bytea);
CREATE TABLE

postgres=# select attname, atttypid::regtype,
 case attstorage when 'p' then 'plain'
 when 'e' then 'external'
 when 'm' then 'main'
 when 'x' then 'extended'
 end AS strategy
 from pg_attribute
 where attrelid = 't'::regclass and attnum > 0;
 attname | atttypid | strategy
---------+----------+----------
 a | integer | plain
 images | bytea | extended

TOAST, for breakfast and compression 28.10.2022 Page 26

Storage strategies

If you know in advance, that data is not compressible
> e.g. images, pdfs, whatever

> Skip compression by default, by changing the strategy to external
postgres=# alter table t alter column images set storage external;
ALTER TABLE
postgres=# select attname, atttypid::regtype,
 case attstorage when 'p' then 'plain'
 when 'e' then 'external'
 when 'm' then 'main'
 when 'x' then 'extended'
 end AS strategy
 from pg_attribute
 where attrelid = 't'::regclass and attnum > 0;
 attname | atttypid | strategy
---------+----------+----------
 a | integer | plain
 images | bytea | external

TOAST, for breakfast and compression 28.10.2022 Page 27

Triggering the toaster

In prosa, the algorithm is
> PostgreSQL will try to store at least 4 tuples per block

> If the new row exceeds one fourth of the block (excluding the header)
> TOAST will kick in

> Loop through all the attributes/columns, which have either external or extended
strategies?

> Start with the longest attribute
> Compress extended attributes

TOAST, for breakfast and compression 28.10.2022 Page 28

Triggering the toaster

Compression?
How?

TOAST, for breakfast and compression 28.10.2022 Page 29

TOAST compression

The default TOAST compression

> \dconfig is a new PostgreSQL 15 feature to list parameters
> You may also use wild cards and "+" to show more information

postgres=# \dconfig default_toast_compression
 List of configuration parameters
 Parameter | Value
---------------------------+-------
 default_toast_compression | pglz
(1 row)

postgres=# \dconfig+ *toast_compression*
 List of configuration parameters
 Parameter | Value | Type | Context | Access privileges
---------------------------+-------+------+---------+-------------------
 default_toast_compression | pglz | enum | user |
(1 row)

TOAST, for breakfast and compression 28.10.2022 Page 30

TOAST compression

How \dconfig came in and how the discussion went
> https://www.postgresql.org/message-id/flat/3118455.1649267333%40sss.pgh.pa.us

https://www.postgresql.org/message-id/flat/3118455.1649267333%40sss.pgh.pa.us

TOAST, for breakfast and compression 28.10.2022 Page 31

TOAST compression

Before PostgreSQL 14 there is only pglz
> This is a build-in compression algorithm

Starting with PostgreSQL 14 there is more choice

> https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
> Focus on compression and decompression speed
> Good tradeoff between compression speed and compression ratio

> lz4 needs to be enabled

postgres=# alter system set default_toast_compression = [TAB][TAB]
DEFAULT lz4 pglz

postgres@debian11pg:/home/postgres/postgresql/ [pgdev] ./configure --help | grep -i lz4
 --with-lz4 build with LZ4 support

https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)

TOAST, for breakfast and compression 28.10.2022 Page 32

TOAST compression

The compression method can be a per column setting
postgres=# alter table t alter column a set compression [TAB][TAB]
DEFAULT LZ4 PGLZ

TOAST, for breakfast and compression 28.10.2022 Page 33

Triggering the toaster

In prosa, the algorithm is
> PostgreSQL will try to store at least 4 tuples per block

> If the new row exceeds one fourth of the block (excluding the header)
> TOAST will kick in

> Loop through all the attributes/columns, which have either external or extended
strategies?

> Start with the longest attribute
> Compress extended attributes

> If the result is still larger than ¼ of the block/page, move it to the TOAST table

dbi services 26.04.2015 Page 34

TOAST tables?

TOAST, for breakfast and compression 28.10.2022 Page 35

TOAST tables

As soon as there is a data type which potentially can be moved out-of-line
> PostgreSQL automatically will create a TOAST table

postgres=# create table t (a int);
CREATE TABLE
postgres=# create table tt (b text);
CREATE TABLE
postgres=# select relname,reltoastrelid::regclass
 from pg_class
 where relname in ('t','tt');

 relname | reltoastrelid
---------+-------------------------
 t | -
 tt | pg_toast.pg_toast_16401
(2 rows)

TOAST, for breakfast and compression 28.10.2022 Page 36

TOAST tables

TOAST tables are in a special schema, not visible by default
postgres=# \dn
 List of schemas
 Name | Owner
--------+-------------------
 public | pg_database_owner
(1 row)

postgres=# \dnS
 List of schemas
 Name | Owner
--------------------+-------------------
 information_schema | postgres
 pg_catalog | postgres
 pg_toast | postgres
 public | pg_database_owner
(4 rows)

TOAST, for breakfast and compression 28.10.2022 Page 37

TOAST tables

How do TOAST tables look like?

> Data is sliced into (compressed) chunks of data and indexed
> The index is always used to access the data

postgres=# \d pg_toast.pg_toast_16401
TOAST table "pg_toast.pg_toast_16401"
 Column | Type
------------+---------
 chunk_id | oid
 chunk_seq | integer
 chunk_data | bytea
Owning table: "public.tt"
Indexes:
 "pg_toast_16401_index" PRIMARY KEY, btree (chunk_id, chunk_seq)

TOAST, for breakfast and compression 28.10.2022 Page 38

TOAST tables

In prosa, the algorithm is
> PostgreSQL will try to store at least 4 tuples per block

> If the new row exceeds one fourth of the block (excluding the header)
> TOAST will kick in

> Loop through all the attributes/columns, which have either external or extended
strategies?

> Start with the longest attribute
> Compress extended attributes

> If the result is still larger than ¼ of the block/page, move it to the TOAST table
> External attributes are handled the same, but no compression
> If the row / tuple still does not fit, take next attribute and proceed the same way
> If all attributes have been compressed but the row/tuple is still too large

> Move all attributes to the TOAST table

TOAST, for breakfast and compression 28.10.2022 Page 39

TOAST demo

postgres=# create table toast_demo (id int primary key, content text);
CREATE TABLE
postgreska
 relname | reltoastrelid
------------+-------------------------
 toast_demo | pg_toast.pg_toast_16411
(1 row)

Demo setup
> A simple dummy table and the corresponding TOAST table

TOAST, for breakfast and compression 28.10.2022 Page 40

TOAST demo

postgres=# insert into toast_demo values (1, repeat('x',10000));
INSERT 0 1

Demo setup
> First simple insert

> Why?
> Compression kicked in and all fits into the block without the need to move out

of line

postgres=# select count(*) from :reltoastrelid;
 count

 0
(1 row)

> Will this trigger the TOASTER?

TOAST, for breakfast and compression 28.10.2022 Page 41

TOAST demo

postgres=# select string_agg (md5(random()::text),'') from generate_series(1,5);
 string_agg

895d7132addc558026ff32c75875a03885634aac6255372a68ba0c7ad783b230e074778ad67488deddfa49719
428593862c079a54e29c09b4a03a8fa97bfa6dce793cce663cff2a1bb1ec3a56aff2b20
(1 row)

postgres=# with dummy_string as
 (select string_agg (md5(random()::text),'') as dummy
 from generate_series(1,5000))
 insert into toast_demo
 select 2, dummy_string.dummy from dummy_string;
INSERT 0 1

Demo setup
> Generating a random string

TOAST, for breakfast and compression 28.10.2022 Page 42

TOAST demo

postgres=# select count(*) from :reltoastrelid;
 count

 81
(1 row)

postgres=# select * from :reltoastrelid limit 3;
 chunk_id | chunk_seq | chunk_data

 16418 | 0 | \x336439343438356...534613>
 16418 | 1 | \x366531363465363...863303>
 16418 | 2 | \x633362346636613...461363>
(3 rows)

Demo setup
> We got 81 compressed chunks in the TOAST table

TOAST, for breakfast and compression 28.10.2022 Page 43

TOAST demo

postgres=# \! wget
https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-A4.pdf
postgres=# \! ls -lha postgresql-14-A4.pdf
-rw-r--r-- 1 postgres postgres 14M Aug 11 15:26 postgresql-14-A4.pdf
postgres=# create table toast_demo2 (id int, doc bytea);
CREATE TABLE
postgres=# select pg_read_binary_file('/home/postgres/postgresql-14-A4.pdf')
 as file; \gset
postgres=# insert into toast_demo2 select i, :'file' from generate_series(1,50) i;
INSERT 0 50
postgres=# select pg_size_pretty(pg_relation_size('toast_demo2'));
 pg_size_pretty

 8192 bytes
(1 row)

Demo setup
> Be carefull with "select *" when you have TOASTed data
> Let's do something weird and load the PostgreSQL documentation

https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-A4.pdf

TOAST, for breakfast and compression 28.10.2022 Page 44

TOAST demo

postgres=# select pg_size_pretty(pg_total_relation_size('toast_demo2'));
 pg_size_pretty

 475 MB
(1 row)
postgres=# \timing on
Timing is on.

Demo setup
> Be carefull with "select *" when you have TOASTed data

TOAST, for breakfast and compression 28.10.2022 Page 45

TOAST demo

postgres=# select id from toast_demo2 where id < 5;
 id

 1
 2
 3
 4
(4 rows)

Time: 6.402 ms

Demo setup
> Be carefull with "select *" when you have TOASTed data

> This is fast, as the TOASTed valued are not touched

TOAST, for breakfast and compression 28.10.2022 Page 46

TOAST demo

postgres=# select * from toast_demo2 where id < 5;
 id | doc

----|--------------------------------
 1 | \x255...1746f722028446f63426f6>
 2 | \x255...1746f722028446f63426f6>
 3 | \x255...1746f722028446f63426f6>
 4 | \x255...1746f722028446f63426f6>
(4 rows)

Time: 587.352 ms
postgres=#

Demo setup
> Be carefull with "select *" when you have TOASTed data

If you don't need the TOASTed data, don't touch it!

TOAST, for breakfast and compression 28.10.2022 Page 47

TOAST demo

postgres=# explain (analyze,buffers) select * from toast_demo2;
 QUERY PLAN

 Seq Scan on toast_demo2 (cost=0.00..1.50 rows=50 width=22) (actual time=0.016..0.024
rows=50 loops=1)
 Buffers: shared hit=1
 Planning Time: 0.053 ms
 Execution Time: 0.054 ms
(4 rows)

Time: 4.772 ms

Explain analyze is misleading
> Completely discards the output

TOAST, for breakfast and compression 28.10.2022 Page 48

TOAST demo

What are the plans for the future?

TOAST, for breakfast and compression 28.10.2022 Page 49

TOAST, the future?

https://postgrespro.com/blog/pgsql/5969559

> Work is going on for a type aware TOASTER
> The goal is to provide a TOAST API so additional TOASTERS can be implemented as

extensions

https://postgrespro.com/blog/pgsql/5969559

TOAST, for breakfast and compression 28.10.2022 Page 50

TOAST, the future?

https://commitfest.postgresql.org/39/3490/

https://commitfest.postgresql.org/39/3490/

TOAST, for breakfast and compression 28.10.2022 Page 51

TOAST, the future?

What is the real-world issue
these patches are trying to solve

TOAST, for breakfast and compression 28.10.2022 Page 52

TOAST, the future?

JSONB

TOAST, for breakfast and compression 28.10.2022 Page 53

A few words about JSONB

JSONB
> Introduced in PostgreSQL 9.4, 2014

> Successor of the JSON data type, which was based on text
> Binary storage of JSON documents

> Comes with indexing support (GIN)
> Made PostgreSQL popular for use with unstructured data
> One database for both, structured and unstructured data
> But

> What is the TOAST strategy for jsonb?
> Extended

> JSON documents easily can become quite large
> You know what happens around 2kB of data

> The TOASTER will kick in

TOAST, for breakfast and compression 28.10.2022 Page 54

A few words about JSONB

What happens if you need to update a JSON document?
> Fetch the whole value
> Update the document where required
> Rewrite the whole document

> Once more, compress, then store out-of-line

Does that sound efficient?
> TOAST is great, but you need to be aware of the current limitations

TOAST, for breakfast and compression 28.10.2022 Page 55

TOAST, final words

 https://de.wikipedia.org/wiki/Toastbrot

https://de.wikipedia.org/wiki/Toastbrot

28.10.2022 Page 56TOAST, for breakfast and compression

	Slide 1
	Who we are
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

