
TOAST, for breakfast and compression



Who we are

28.10.2022 Page 2TOAST, for breakfast and compression

The Company
>Founded in 2010
>More than 100 specialists 
>Specialized in the Middleware Infrastructure

> The invisible part of IT
>Customers in Switzerland and all over Europe

Our Offer
>Consulting
>Service Level Agreements (SLA)
>Trainings
>License Management
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Daniel Westermann
Technology Leader
Principal Consultant

+41 79 927 24 46
daniel.westermann@dbi-services.com
@westermanndanie
Daniel Westermann
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This is TOAST for breakfast
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... but what is TOAST for compression about?
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... before we start to talk about TOAST ...
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... we need to talk about blocks or pages!
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Blocks / Pages

PostgreSQL (and other databases as well) stores all data in blocks / pages
> Usually, a block is 8kB

> This can be changed when PostgreSQL is compiled from source code
postgres@debian11pg:/home/postgres/postgresql/ [pg16] ./configure --help | grep block
  --with-blocksize=BLOCKSIZE
                          set table block size in kB [8]
  --with-wal-blocksize=BLOCKSIZE
                          set WAL block size in kB [8]
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Blocks / Pages

How does a block/page look like?
> https://www.postgresql.org/docs/current/storage-page-layout.html 

This is your data

https://www.postgresql.org/docs/14/storage-page-layout.html
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Items / Rows / Tuples

This leads us to the next question
> What exactly an item / a row / a tuple is made of?

> What is in header data?
> e.g. the transaction IDs which created / deleted the tuple and some more
> https://www.postgresql.org/docs/current/storage-page-layout.html#PAGEHEADERDATA-TABLE 

> The more important question here is: What defines the content of a column?
> The data types, which are used for the columns

Tuple header / Metadata Column 1 Column 2 Column 3 Column 4 Column ...

https://www.postgresql.org/docs/14/storage-page-layout.html#PAGEHEADERDATA-TABLE
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Sizing

This leads us to the next question
> How large can a column become?

> You need to know the data type to answer that!

Tuple header / Metadata Column 1 Column 2 Column 3 Column 4 Column ...

24 bytes ?? bytes ?? bytes ?? bytes ?? bytes ?? bytes
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Sizing

How do you know what a data type will consume on disk?
> The easy answer is: Check the documentation

> https://www.postgresql.org/docs/current/datatype.html 

https://www.postgresql.org/docs/current/datatype.html
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Sizing

How do you know what a data type will consume on disk?
> You can also ask PostgreSQL directly about the size of a data type, or the complete tuple

> This is an empty tuple or, in other words: the header data

> This is the size of a smallint

postgres=# select pg_column_size ( row() );
 pg_column_size 
----------------
             24
(1 row)

postgres=# select pg_column_size ( row(0::smallint) ) - 24;
 ?column? 
----------
        2
(1 row)
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Sizing

When it becomes more tricky
> Not all data types have a fixed size

> How does this look like?

> This can increase

postgres=# select pg_column_size ( row(1.1::numeric) ) - 24;
 ?column? 
----------
        7
(1 row)

postgres=# select pg_column_size ( row(1111111.1111111111::numeric) ) 
                  - 24;
 ?column? 
----------
       13
(1 row)
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Tuples in blocks

Multiple items/rows/tuples go into one block

ItemItem

ItemItemItem

Item Item Item Item
Item Item

fillfactor=100%

ItemNo space left...
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Tuples in blocks

Multiple items/rows/tuples go into one block

fillfactor=100%

Item

New block
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Tuples in blocks

The more complicated case
> An item arrives which does not fit into the block at all

fillfactor=100%

Item

Item
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Tuples in blocks

The more complicated case
> PostgreSQL does not allow a row/tuple to span multiple blocks

> There is no concept such as row chaining in Oracle
> This comes with advantages

> Large data only needs to be pulled out when required, the main table stays small
> What happens is

> Depending on the data type (more on that later)
> Compress the row
> Maybe store it outside the block
> Put a pointer in the row/tuple to locate the out of line storage

> TOAST
> The Oversized-Attribute Storage Technique

> or
> the best thing since sliced bread
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Say goodbye to breakfast
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Tuples in blocks

In fact, this information so far is not accurate
> An item arrives which does not fit into the block at all

fillfactor=100%

Item

Item
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Triggering the toaster

In fact, this information is not accurate
> PostgreSQL will try to store at least 4 tuples per block

> src/include/access/heaptoast.h

> This means, with a standard block size of 8kB
> 2000 bytes will trigger the toaster (excluding the header)

> This can be controlled per table

#define TOAST_TUPLES_PER_PAGE   4

postgres=# alter table t set ( toast_tuple_target = N );
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Triggering the toaster

In prosa, the algorithm is
> PostgreSQL will try to store at least 4 tuples per block

> If the new row exceeds one fourth of the block (excluding the header)
> TOAST will kick in

> Loop through all the attributes/columns, which have either external or extended 
strategies?
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External and extended?
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Storage strategies

There are four different strategies for TOASTing

> Remember: The strategy is on the data type, not the tuple/row!

> Remember: The strategy is on the data type, not the tuple/row!

Strategy Effect

PLAIN Prevents either compression or out-of-line storage; the only option for non-TOAST-able data 
types.

EXTENDED Allows both compression and out-of-line storage; first compression, then out-of-line.
EXTERNAL Allows out-of-line storage but not compression.
MAIN Allows compression but not out-of-line storage.
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Storage strategies

How do I know the strategy of a data type when it comes to toasting?

> Metadata of columns is stored in pg_attribute

postgres=# create table t ( a int, images bytea );
CREATE TABLE

postgres=# select attname, atttypid::regtype,
                  case attstorage when 'p' then 'plain'
                                  when 'e' then 'external'
                                  when 'm' then 'main'
                                  when 'x' then 'extended'
                  end AS strategy
             from pg_attribute
            where attrelid = 't'::regclass and attnum > 0;
 attname | atttypid | strategy 
---------+----------+----------
 a       | integer  | plain
 images  | bytea    | extended
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Storage strategies

If you know in advance, that data is not compressible
> e.g. images, pdfs, whatever

> Skip compression by default, by changing the strategy to external
postgres=# alter table t alter column images set storage external;
ALTER TABLE
postgres=# select attname, atttypid::regtype,
                  case attstorage when 'p' then 'plain'
                       when 'e' then 'external'
                       when 'm' then 'main'
                       when 'x' then 'extended'
                  end AS strategy
             from pg_attribute
            where attrelid = 't'::regclass and attnum > 0;
 attname | atttypid | strategy 
---------+----------+----------
 a       | integer  | plain
 images  | bytea    | external
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Triggering the toaster

In prosa, the algorithm is
> PostgreSQL will try to store at least 4 tuples per block

> If the new row exceeds one fourth of the block (excluding the header)
> TOAST will kick in

> Loop through all the attributes/columns, which have either external or extended 
strategies?

> Start with the longest attribute
> Compress extended attributes



TOAST, for breakfast and compression 28.10.2022 Page 28

Triggering the toaster

Compression? 
How?
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TOAST compression

The default TOAST compression

> \dconfig is a new PostgreSQL 15 feature to list parameters
> You may also use wild cards and "+" to show more information

postgres=# \dconfig default_toast_compression
 List of configuration parameters
         Parameter         | Value 
---------------------------+-------
 default_toast_compression | pglz
(1 row)

postgres=# \dconfig+ *toast_compression*
                    List of configuration parameters
         Parameter         | Value | Type | Context | Access privileges 
---------------------------+-------+------+---------+-------------------
 default_toast_compression | pglz  | enum | user    | 
(1 row)
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TOAST compression

How \dconfig came in and how the discussion went
> https://www.postgresql.org/message-id/flat/3118455.1649267333%40sss.pgh.pa.us 

https://www.postgresql.org/message-id/flat/3118455.1649267333%40sss.pgh.pa.us
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TOAST compression

Before PostgreSQL 14 there is only pglz
> This is a build-in compression algorithm

Starting with PostgreSQL 14 there is more choice

> https://en.wikipedia.org/wiki/LZ4_(compression_algorithm) 
> Focus on compression and decompression speed
> Good tradeoff between compression speed and compression ratio

> lz4 needs to be enabled

postgres=# alter system set default_toast_compression = [TAB][TAB] 
DEFAULT  lz4      pglz 

postgres@debian11pg:/home/postgres/postgresql/ [pgdev] ./configure --help | grep -i lz4
  --with-lz4              build with LZ4 support

https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
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TOAST compression

The compression method can be a per column setting
postgres=# alter table t alter column a set compression [TAB][TAB] 
DEFAULT  LZ4      PGLZ 
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Triggering the toaster

In prosa, the algorithm is
> PostgreSQL will try to store at least 4 tuples per block

> If the new row exceeds one fourth of the block (excluding the header)
> TOAST will kick in

> Loop through all the attributes/columns, which have either external or extended 
strategies?

> Start with the longest attribute
> Compress extended attributes

> If the result is still larger than ¼ of the block/page, move it to the TOAST table
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TOAST tables?
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TOAST tables

As soon as there is a data type which potentially can be moved out-of-line
> PostgreSQL automatically will create a TOAST table

postgres=# create table t ( a int );
CREATE TABLE
postgres=# create table tt ( b text );
CREATE TABLE
postgres=# select relname,reltoastrelid::regclass 
             from pg_class
             where relname in ('t','tt');

 relname |      reltoastrelid      
---------+-------------------------
 t       | -
 tt      | pg_toast.pg_toast_16401
(2 rows)
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TOAST tables

TOAST tables are in a special schema, not visible by default
postgres=# \dn
      List of schemas
  Name  |       Owner       
--------+-------------------
 public | pg_database_owner
(1 row)

postgres=# \dnS
            List of schemas
        Name        |       Owner       
--------------------+-------------------
 information_schema | postgres
 pg_catalog         | postgres
 pg_toast           | postgres
 public             | pg_database_owner
(4 rows)
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TOAST tables

How do TOAST tables look like?

> Data is sliced into (compressed) chunks of data and indexed
> The index is always used to access the data

postgres=# \d pg_toast.pg_toast_16401
TOAST table "pg_toast.pg_toast_16401"
   Column   |  Type   
------------+---------
 chunk_id   | oid
 chunk_seq  | integer
 chunk_data | bytea
Owning table: "public.tt"
Indexes:
    "pg_toast_16401_index" PRIMARY KEY, btree (chunk_id, chunk_seq)
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TOAST tables

In prosa, the algorithm is
> PostgreSQL will try to store at least 4 tuples per block

> If the new row exceeds one fourth of the block (excluding the header)
> TOAST will kick in

> Loop through all the attributes/columns, which have either external or extended 
strategies?

> Start with the longest attribute
> Compress extended attributes

> If the result is still larger than ¼ of the block/page, move it to the TOAST table
> External attributes are handled the same, but no compression
> If the row / tuple still does not fit, take next attribute and proceed the same way
> If all attributes have been compressed but the row/tuple is still too large

> Move all attributes to the TOAST table



TOAST, for breakfast and compression 28.10.2022 Page 39

TOAST demo

postgres=# create table toast_demo ( id int primary key, content text );
CREATE TABLE
postgreska
  relname   |      reltoastrelid      
------------+-------------------------
 toast_demo | pg_toast.pg_toast_16411
(1 row)

Demo setup
> A simple dummy table and the corresponding TOAST table
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TOAST demo

postgres=# insert into toast_demo values (1, repeat('x',10000));
INSERT 0 1

Demo setup
> First simple insert

> Why?
> Compression kicked in and all fits into the block without the need to move out 

of line

postgres=# select count(*) from :reltoastrelid;
 count 
-------
     0
(1 row)

> Will this trigger the TOASTER?
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TOAST demo

postgres=# select string_agg (md5(random()::text),'') from generate_series(1,5);
                                     string_agg                                           
                                 
-----------------------------------------------------------------------------------------
 
895d7132addc558026ff32c75875a03885634aac6255372a68ba0c7ad783b230e074778ad67488deddfa49719
428593862c079a54e29c09b4a03a8fa97bfa6dce793cce663cff2a1bb1ec3a56aff2b20
(1 row)

postgres=# with dummy_string as
             ( select string_agg (md5(random()::text),'') as dummy 
                 from generate_series(1,5000) )
           insert into toast_demo 
           select 2, dummy_string.dummy from dummy_string;
INSERT 0 1

Demo setup
> Generating a random string
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TOAST demo

postgres=# select count(*) from :reltoastrelid;
 count 
-------
    81
(1 row)

postgres=# select * from :reltoastrelid limit 3;
 chunk_id | chunk_seq |  chunk_data
 -----------------------------------------------------
    16418 |         0 | \x336439343438356...534613>
    16418 |         1 | \x366531363465363...863303>
    16418 |         2 | \x633362346636613...461363>
(3 rows)

Demo setup
> We got 81 compressed chunks in the TOAST table
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TOAST demo

postgres=# \! wget 
https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-A4.pdf
postgres=# \! ls -lha postgresql-14-A4.pdf
-rw-r--r-- 1 postgres postgres 14M Aug 11 15:26 postgresql-14-A4.pdf
postgres=# create table toast_demo2 ( id int, doc bytea );
CREATE TABLE
postgres=# select pg_read_binary_file('/home/postgres/postgresql-14-A4.pdf') 
                  as file; \gset
postgres=# insert into toast_demo2 select i, :'file' from generate_series(1,50) i;
INSERT 0 50
postgres=# select pg_size_pretty(pg_relation_size('toast_demo2'));
 pg_size_pretty 
----------------
 8192 bytes
(1 row)

Demo setup
> Be carefull with "select *" when you have TOASTed data
> Let's do something weird and load the PostgreSQL documentation

https://www.postgresql.org/files/documentation/pdf/14/postgresql-14-A4.pdf
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TOAST demo

postgres=# select pg_size_pretty(pg_total_relation_size('toast_demo2'));
 pg_size_pretty 
----------------
 475 MB
(1 row)
postgres=# \timing on
Timing is on.

Demo setup
> Be carefull with "select *" when you have TOASTed data
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TOAST demo

postgres=# select id from toast_demo2 where id < 5;
 id 
----
  1
  2
  3
  4
(4 rows)

Time: 6.402 ms

Demo setup
> Be carefull with "select *" when you have TOASTed data

> This is fast, as the TOASTed valued are not touched
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TOAST demo

postgres=# select * from toast_demo2 where id < 5;
 id | doc                                                                                 
                                                                                          
                                                                                          
 
----|--------------------------------
  1 | \x255...1746f722028446f63426f6>
  2 | \x255...1746f722028446f63426f6>
  3 | \x255...1746f722028446f63426f6>
  4 | \x255...1746f722028446f63426f6>
(4 rows)

Time: 587.352 ms
postgres=# 

Demo setup
> Be carefull with "select *" when you have TOASTed data

If you don't need the TOASTed data, don't touch it!
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TOAST demo

postgres=# explain (analyze,buffers) select * from toast_demo2;
                                               QUERY PLAN                                 
              
-----------------------------------------------------------------------------------------
---------------
 Seq Scan on toast_demo2  (cost=0.00..1.50 rows=50 width=22) (actual time=0.016..0.024 
rows=50 loops=1)
   Buffers: shared hit=1
 Planning Time: 0.053 ms
 Execution Time: 0.054 ms
(4 rows)

Time: 4.772 ms

Explain analyze is misleading
> Completely discards the output
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TOAST demo

What are the plans for the future?
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TOAST, the future?

https://postgrespro.com/blog/pgsql/5969559 

> Work is going on for a type aware TOASTER
> The goal is to provide a TOAST API so additional TOASTERS can be implemented as 

extensions

https://postgrespro.com/blog/pgsql/5969559
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TOAST, the future?

https://commitfest.postgresql.org/39/3490/ 

https://commitfest.postgresql.org/39/3490/
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TOAST, the future?

What is the real-world issue
these patches are trying to solve
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TOAST, the future?

JSONB
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A few words about JSONB

JSONB
> Introduced in PostgreSQL 9.4, 2014

> Successor of the JSON data type, which was based on text
> Binary storage of JSON documents

> Comes with indexing support (GIN)
> Made PostgreSQL popular for use with unstructured data
> One database for both, structured and unstructured data
> But

> What is the TOAST strategy for jsonb?
> Extended

> JSON documents easily can become quite large
> You know what happens around 2kB of data

> The TOASTER will kick in
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A few words about JSONB

What happens if you need to update a JSON document?
> Fetch the whole value
> Update the document where required
> Rewrite the whole document

> Once more, compress, then store out-of-line

Does that sound efficient?
> TOAST is great, but you need to be aware of the current limitations
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TOAST, final words

 https://de.wikipedia.org/wiki/Toastbrot 

https://de.wikipedia.org/wiki/Toastbrot
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