dWS
~—

Introduction to WITH

queries and
Materialization

Divya Sharma

Sr. Database Specialist SA
Amazon Web Services

Why are we discussing
“Common Table Expressions”'?

aws
2

It all started with a customer question

Existing SQL Z/

with cte_items as (
select distinct c.p_id as p_id, ps.ps_sk as ps_sk from euA_staging.staging_nd_mk_c cjoin eu_report.v_pspson ps.p_id::integer=c.cm_id
and c.p_cdr="AB NATIONAL'

)
select /
Updated SQL

with cte_items as MATERIALIZED (

select distinct c.p_id as p_id, ps.ps_sk as ps_sk from euA_staging.staging_nd_mk_c cjoin eu_report.v_pspson ps.p_id::integer=c.cm_id
and c.p_cdr="AB NATIONAL'

)

select

Run time in new aroura version with |3 min 28 secs
"Materialized"

Run time in new aroura version 48 secs
without "Materialized"

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

What are “Common Table Expressions"?

WITH clause syntax

aws
>

What are “Common Table Expressions"?

WITH regional sales AS (

SELECT region, SUM(amount) AS total sales
FROM orders
GROUP BY region),

top regions AS (
SELECT region

FROM regional sales
WHERE total sales > (SELECT SUM(total sales)/10 FROM regional sales))

SELECT region, product, SUM(quantity) AS product units, SUM(amount) AS
product sales N

FROM orders

WHERE region IN (SELECT region FROM top regions) GROUP BY region, product

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

Auxiliary
statement 1

Auxiliary
statement 2

Primary
statement

What settings impact CTE's

- work _mem - intermediate results
- enable_material - not related to CTE!

- Planner costing parameters

aws
2!

Advantages of using CTEs

aws
2

Advantages of using CTEs

Using a sample table...

postgres=> \d orders

Table "public.orders"

region

product character varying(50)
quantity bigint

amount bigint

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

Building a sample report

blue shoe|
widget |
widget |
blue shoe|
tumbler

|
dice |
tumbler \

aws

N 2) © 2022, Amazon

Web Sen

vices, Inc. or its affiliates.

Advantages of using CTEs

Readability

WITH regional sales AS (

SELECT region, SUM(amount) AS total sales
FROM orders
GROUP BY region),

top regions AS (

SELECT region

FROM regilonal sales
WHERE total sales > (SELECT SUM(total sales) /10 FROM regional sales))

SELECT region, product, SUM(quantity) AS product units, SUM(amount) AS
product sales

FROM orders
WHERE region IN (SELECT region FROM top regions) GROUP BY region, product;

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

Readability

SELECT region,
product,
SUM (quantity) AS product units,
SUM (amount) AS product sales
FROM orders N
WHERE region IN
(
SELECT region
FROM orders

GROUP BY region
HAVING sum (amount) >
(
SELECT SUM (amount) /10
FROM orders

)

)
GROUP BY region, product;

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

Reusability

WITH regional sales AS (é-——

SELECT region, SUM(amount) AS total sales
FROM orders
GROUP BY region),

top regions AS (
SELECT region / /

FROM regilonal sales
WHERE total sales > (SELECT SUM(total sales) /10 FROM regional sales))

SELECT region, product, SUM(quantity) AS product units, SUM(amount) AS
product sales

FROM orders
WHERE region IN (SELECT region FROM top regions) GROUP BY region, product;

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

Recursive

postgres=> WITH @

SELECT 1
UNION ALL

SELECT n+l FROM t
)

SELECT n FROM t;

© 2022, Amazon Web Services, Inc. or its affiliates.

Non-recursive part

Recursive part (with limit)

Advantages of using CTEs

Recursive (beware without termination)

Not terminated

Limit or
Where clause

aws

p

Advantages of using CTEs

Recursive (beware without termination)

postgres=> WITH RECURSIVE t (n) AS (
SELECT 1

UNION ALL
SELECT n+1 FROM t

)
SELECT n FROM t;

“"CCancel

request sent ERROR: canceling statement due to user request
Time: 32455.071 ms (00:32.455)

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

manager

Database Engineer
Senior Developer

w O

e Non-Recursive part

SELECT e.id, e.name, e.manager id,

oNTo e — 7 Recursive part

FROM employees e E——

JOIN managers O .manager id = managers.id >

)
SELECT * FROM managers;

name

ice President
Database Engineer

Manager
Senior Developer
Developer

Recursive Hierarchy

Postgres 14 feature

aws
>

What is “Materialized” for
CTEs?

aws
2

What's “Materialized” for CTEs?

Execution Plan

Temporary

table

CTE call 1
CTE call 2
CTE call 3

aws

N >) © 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation before version 12

Always materialized Execution Plan

Never inlined

:
)

aws
>

CTE computation in version 12+

Conditional materialization gecution Plan

Planner considers inlining

p
'
J

aws
>

:

CTE computation in version 12+

Consider
inlining queries

aterialize

explicitly
specified
ves.
A 4 \ 4
N a2 N
Do not Inline Inline

aws
~— = Materialize

CTE computation version 12+ : Explicitly
mention "Materialize”

postgres=> create table ppig tableflas select s, md5(random()::text) from|generate Series(1,1000000)] s;

SELECT 1000000
postgres=>
postgres=>

postgres=> Explain Analyze WITH w AS MATERIALIZED

SELECT * FROM big_table
)

SELECT * FROM w WHERE s=10;
QUERY PLAN

CTE Scan on w (cost=18334.00..40834.00 rows=5000 width=36) (actual time=0.013..395.725 rows=1 loops=1)
Filter: (s = 10)
Rows Removed by Filter: 999999

W
-> Seq Scan on big table J (cost=0.00..18334.00 rows=1000000 width=37) (actual time=0.006..98.871 rows=1000000 loops=1)

.U
404.407 ms

Execution Time:
(7 rows)

adWws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation version 12+ : Explicitly
mention "Materialize”
Important :

Know your

postgres=> Explain Analyze WITH w AS (indexe5!

SELECT * FROM big_table

)

SELECT * FROM w WHERE s=10;
QUERY PLAN

Index Scan using big_table_s_idx on big table (cost=0.42..8.44 rows=1 width=37) (actual time=0.062..0.062 rows=1 loops=1)

Index Cond: (s = 10)
Planning Time: 0.166 ms
Execution Time: 0.075 ms
(4 rows)

postgres=> Explain Analyze WITH w AS MATERIALIZED (
SELECT * FROM big table

)

SELECT * FROM w WHERE s=10;
QUERY PLAN

(cost=18334.00..40834.00 rows=5000 width=36) (actual time=0.013..395.725 rows=1 loops=1)

CTE Scan on w

Filter: (s = 10)
Rows Removed by Filter: 999999f—
CTE w &
-> Seq Scan on big table (cost=0.00..18334.00 rows=1000000 width=37) (actual time=0.006..98.871 rows=1000000 loops=1)

Planning Time: 0.053 ms
Execution Time: 404.407 ms

(7 rows)

CTE computation version 12+ Multiple Reference

postgres=> explain
WITH pgc cte AS (
SELECT * FROM pg cl

)

2.relname

rows=460 width=279)
.10.35 rows=2 width=230)
Filter: (relname

CTE Scan on pgc cte c _cte2 e . ..10.35 rows=2 width=236)
Filter: (relname

dWS

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation version 12+ : Multiple Reference

But...we can use NOT MATERIALIZED

B ‘Eﬁh;gc_ctel.relname = pgc cteZ.relname
WHERE pgc cteZ.relname = 'pg class';
QUERY PLAN

sp_index on pg class

:tname)

Index Cond: (relname =

dWS

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation version 12+ : Inlining

postgres=> explain analyze
postgres-> WITH CTE_emp AS (
postgres (> SELECT manager_id, employees.name FROM employees GROUP BY manager_id, employees.name
postgres(>)
postgres-> SELECT * FROM CTE_emp WHERE manager_id = 4;
QUERY PLAN

CTE Scan on cte_emp (cost 11.75..13.32 rows=1 width=520) (actual time=0.022..0.026 rows=2 loops=1)
Filter: (manager_id = 4) K
Rows Removed by Filter:
CTE cte_emp
-> HashAggregate (cost=11.05..11.75 rows=70 width=520) (actual time=0.021..0.022 rows=7 loops=1)
Group Key: employees.manager_id, employees.name
-> Seq Scan on employees (cost=0.00..10.70 rows=70 width=520) (actual time=0.012..0.013 rows=7 loops=1)
Planning time: 0.090 ms

Execution time: 0.108 ms h

(9 rows)

postgres=> explain analyze
postgres-> WITH CTE_emp AS (
postgres (> SELECT manager_id, employees.name FROM employees GROUP BY manager_id, employees.name
postgres(>)
postgres-> SELECT * FROM CTE_emp WHERE manager_id = 4;
QUERY PLAN

Group (cost=10.88..10.90 rows=1 width=520) (actual time=0.020..0.022 rows=2 loops=1)
Group Key: employees.manager_id, employees.name
-> Sort (cost=10.88..10.89 rows=1 width=520) (actual time=0.019..0.020 rows=2 loops=1)
Sort Key: employees.name
Sort Method: quicksort Memory: 25kB
-> Seq Scan on employees (cost=0.00..10.88 rows=1 width=520) (actual time=0.008..0.009 rows=2 loops=1)
Filter: (manager_id = 4) “
Rows Removed by Filter: 5
Planning Time: 0.093 ms

Execution Time: 0.041 ms"

(10 rows)

Version 11

Version 12

Usage and impact of
Materialized CTEs

aws
2

Usage and Impact of Materializing CTEs

- |t can avoid duplicate computation of an expensive WITH query
- Act as an “optimization fence"” — black box to the planner
- Materialization itself can be a bit costly

- Indexes cannot be used efficiently after Materializing CTEs

aws
2!

Going back to the customer question

vith cte_ites as O

select distin "0 _1d as p id, ps.ps sk as ps sk from ra.staging nd mk c ¢ join

ra report.v ps ps on ps.p id::integer=c.cm id and c.p cdr=‘NATIONAL’
)

Select Existing SQL on version 10

with cte items a{ MATERIALIZED

select distinct c.p d,

— ps.ps sk as ps sk from ra.staging nd mk ¢ ¢ join ra report.v ps
ps on ps.p id::integer=c.cm id and c.p CAr=mps 4

) Revised SQL on version 13

Select

PG13 execution time with “MATERIALIZED" : 3m 28s
PG13 execution time without “"MATERIALIZED": 48s

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

Sample Uses of CTEs

aws
2

Autovacuum Eligible

WITH vbt AS (SELECT setting AS autovacuum vacuum threshold FROM Jpg settings WHERE name =
'autovacuum vacuum threshold’),
vsf AS (SELECT setting AS autovacuum vacuum scale factor FROM pg settings WHERE name =

'autovacuum vacuum scale factor'),
fma AS (SELECT setting AS autovacuum freeze max age FROM pg settings WHERE name = 'autovacuum freeze max age’),

sto AS (select ek it part(setting, '=', 1) as param,split part(setting, '=', 2) as value from (select oid
opt oid,unnestfreloptions)lsetting from pg class) opt)

SELECT '"'||ns.nspnamel ["."'"||c.relname||'"' as relation,pg size pretty(pg table size(c.oid)) as
table size,age(relfrozenxid) as xid age, coalesce(cfma.value::float, autovacuum freeze max age::float)
autovacuum freeze max age,

(coalesce(cvbt.value::float, autovacuum vacuum threshold::float) +

coalesce (cvsf.value::float,autovacuum vacuum scale factor::float) * c.reltuples)

AS autovacuum vacuum tuples, n dead tup as dead tuples FROM

Pg class ¢ join pg namespace ns on ns.old = c.relnamespace

join pg stat all tables stat on stat.relid = c.oid join vbt on (1=1) join vsf on (1=1) Jjoin fma on (1=1)
left join sto cvbt on cvbt.param = 'autovacuum vacuum threshold' and c.oid = cvbt.opt oid

left join sto cvsf on cvsf.param = 'autovacuum vacuum scale factor' and c.oid = cvsf.opt oid

left join sto cfma on cfma.param = 'autovacuum freeze max age' and c.oid = cfma.opt oid

WHERE c.relkind = 'r' and nspname <> 'pg catalog'

AND (age(relfrozenxid) >= coalesce(cfma.value::float, autovacuum freeze max age::float)

OR coalesce(cvbt.value::float, autovacuum vacuum threshold::float) +

coalesce (cvsf.value::float,autovacuum vacuum scale factor::float) *

c.reltuples <= n dead tup)

ORDER BY age(relfrozenxid) DESC LIMIT 10;

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html

© 2022, Amazon Web Services, Inc. or its affiliates.

Autovacuum Eligible

(cont.)

aws
>

XID Wrap Estimate

WITH max age AS (SELECT 2000000000 as max old xid , setting AS
autovacuum freeze max age FROM pg catalog.pg settings

WHERE name = 'autovacuum freeze max age') ,

per database stats AS (SELECT datname , m.max old xid::int ,
m.autovacuum freeze max age::int , age(d.datfrozenxid) AS oldest xid
FROM pg catalog.pg database d JOIN max age m ON (true) WHERE
d.datallowconn)

SELECT max (oldest xid) AS oldest xid ,
max (ROUND (100* (oldest xid/max old xid::float))) AS
percent towards wraparound
, max (ROUND (100* (oldest xid/autovacuum freeze max age::float))) AS
percent towards emergency autovac
FROM per database stats ;

https://github.com/awslabs/pg-collector/blob/main/pg_collector.sql#L212

dWS

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

XID Wrap Estimate

(cont.)

aws
>

Index Size and Info

WITH index size info as

(

SELECT

schemaname, relname as "Table",

indexrelname AS indexname,

indexrelid,

pg relation size(indexrelid) index size byte,

pg size pretty(pg relation size(indexrelid)) AS index size
FROM pg catalog.pg statio all indexes ORDER BY 1,4 desc)
Select a.schemaname,

a.relname as "Table Name",

.indexrelname AS indexname,
.lndex size,

.1dx tup read,
.1dx tup fetch
from pg stat all indexes a , 1index size info b

a
b
a.ldx scan,
a
a

where a.idx scan >0

and a.indexrelid=b.indexrelid

and a.schemaname not in ('pg catalog')

order by b.index size byte dgsc,a.idx_scan asc ;

https://github.com/awslabs/pg-collector/blob/main/pg_collector.sql#L1172

© 2022, Amazon Web Services, Inc. or its affiliates.

Index Size and Info
(cont.)

indexname

public big table big table s idx
pg toast pPg toast 432944 pg toast 432944 index 1936 kB

public mytable mytable id 1336 kB
pg toast pg toast 430903 pg toast 430903 index 104

(@)}
O
~J
(e6)
o

(

N
O
O
[

public employees employee idx 16

= O

pg toast pg toast 307! pg toast 3079 index 16
pg toast pg toast 125 pg toast 1255 index 16
public blog b1 0« : 16
o 1
1

O
J

N
\

pg_toast pg _toast 2619 6
Pg_toast pg toast 2618 6

4
0
1
0
0
4
7
3

NG

DN
U TAN
~ DN

(10 rows)

dWS

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

Should | use CTE's?

« Will a subquery be worse?
« Will using temp tables be better?
- Will MATERIALIZE help or hurt?

- Will a view/materialized view be better?

As with most tuning decisions....it depends!

aws
2!

CTE's continue to improve

All of this is great. I'm kinda uneasy about the fact that by default
CTEs will be run in NOT MATERIALIZED way, and if you want to
preserve older way of working, you have to modify your queries. But —
it's definitely a progress, so | can't really complain.

Thanks to all involved, great work.

- Hubert “depesz” Lubaczewski

https://www.depesz.com/2019/02/19/waiting-for-postgresql-12-allow-user-control-of-cte-materialization-and-change-the-default-behavior/

aws
>

dWS

\/‘7

Thank you!

© 2022, Amazon Web Services, Inc. or its affiliates.

