
© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Introduction to WITH
queries and
Materialization
Divya Sharma
Sr. Database Specialist SA
Amazon Web Services

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Why are we discussing
“Common Table Expressions”?

© 2022, Amazon Web Services, Inc. or its affiliates.

It all started with a customer question

© 2022, Amazon Web Services, Inc. or its affiliates.

What are “Common Table Expressions”?
WITH clause syntax

WITH cte_name AS (

CTE_query_definition

) statement;

© 2022, Amazon Web Services, Inc. or its affiliates.

What are “Common Table Expressions”?
WITH regional_sales AS (

SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region),

top_regions AS (

SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales))

SELECT region, product, SUM(quantity) AS product_units, SUM(amount) AS
product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions) GROUP BY region, product;

Auxiliary
statement 1

Primary
statement

Auxiliary
statement 2

© 2022, Amazon Web Services, Inc. or its affiliates.

What settings impact CTE’s

• work_mem – intermediate results

• enable_material - not related to CTE!

• Planner costing parameters

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

© 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

postgres=> \d orders

Table "public.orders"

Column | Type | Collation | Nullable | Default
----------+-----------------------+-----------+----------+---------
region | bigint | | |
product | character varying(50) | | |
quantity | bigint | | |
amount | bigint | | |

Using a sample table…

© 2022, Amazon Web Services, Inc. or its affiliates.

region | product | product_units | product_sales
--------+----------+---------------+---------------

3 | blue shoe| 20 | 200
3 | widget | 7 | 77
1 | widget | 3 | 33
1 | blue shoe| 15 | 150
1 | tumbler | 3 | 6
4 | dice | 100 | 100
4 | tumbler | 9 | 198

(7 rows)

Building a sample report

Advantages of using CTEs

© 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

Readability
WITH regional_sales AS (

SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region),

top_regions AS (

SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales))

SELECT region, product, SUM(quantity) AS product_units, SUM(amount) AS
product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions) GROUP BY region, product;

© 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

Readability
SELECT region,

product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales

FROM orders
WHERE region IN

(
SELECT region
FROM orders
GROUP BY region
HAVING sum(amount) >

(
SELECT SUM(amount)/10
FROM orders

)
)

GROUP BY region, product;

© 2022, Amazon Web Services, Inc. or its affiliates.

Advantages of using CTEs

Reusability
WITH regional_sales AS (

SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region),

top_regions AS (

SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales))

SELECT region, product, SUM(quantity) AS product_units, SUM(amount) AS
product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions) GROUP BY region, product;

© 2022, Amazon Web Services, Inc. or its affiliates.

postgres=> WITH RECURSIVE t(n) AS (
SELECT 1
UNION ALL
SELECT n+1 FROM t WHERE n+1 <= 5
)
SELECT n FROM t;
n

1
2
3
4
5
(5 rows)

Recursive

Non-recursive part

Recursive part (with limit)

Advantages of using CTEs

© 2022, Amazon Web Services, Inc. or its affiliates.

QUERY PLAN
--
CTE Scan on t (cost=4.28..6.30 rows=101 width=4)
CTE t
-> Recursive Union (cost=0.00..4.28 rows=101 width=4)

-> Result (cost=0.00..0.01 rows=1 width=4)
-> WorkTable Scan on t t_1 (cost=0.00..0.23 rows=10 width=4)

(5 rows)

Recursive (beware without termination)

QUERY PLAN
--
Limit (cost=4.28..4.38 rows=5 width=4)
CTE t
-> Recursive Union (cost=0.00..4.28 rows=101 width=4)

-> Result (cost=0.00..0.01 rows=1 width=4)
-> WorkTable Scan on t t_1 (cost=0.00..0.23 rows=10 width=4)

-> CTE Scan on t (cost=0.00..2.02 rows=101 width=4)
(6 rows)

QUERY PLAN

CTE Scan on t (cost=3.21..3.83 rows=31 width=4)
CTE t
-> Recursive Union (cost=0.00..3.21 rows=31 width=4)

-> Result (cost=0.00..0.01 rows=1 width=4)
-> WorkTable Scan on t t_1 (cost=0.00..0.26 rows=3 width=4)

Filter: ((n + 1) <= 5)
(6 rows)

Not terminated

Limit or
Where clause

Advantages of using CTEs

© 2022, Amazon Web Services, Inc. or its affiliates.

postgres=> WITH RECURSIVE t(n) AS (
SELECT 1
UNION ALL
SELECT n+1 FROM t
)
SELECT n FROM t;

^CCancel
request sent ERROR: canceling statement due to user request
Time: 32455.071 ms (00:32.455)

Recursive (beware without termination)

Advantages of using CTEs

© 2022, Amazon Web Services, Inc. or its affiliates.

postgres=> select * from employees;
id | name | salary | job | manager_id

----+----------+--------+-------------------+------------
1 | Adam | 10000 | CEO |
4 | Divya | 1800 | Manager | 5
6 | Vinicius | 2000 | Database Engineer | 7
2 | Luis | 1400 | Senior Developer | 4
5 | Paola | 4000 | CTO | 7
3 | Shawn | 500 | Developer | 4
7 | Ron | 5000 | Vice President | 1

(7 rows)

postgres=> WITH RECURSIVE managers AS (
SELECT id, name, manager_id, job, 1 AS level
FROM employees
WHERE id = 1

UNION
SELECT e.id, e.name, e.manager_id, e.job, managers.level + 1 AS level
FROM employees e
JOIN managers ON e.manager_id = managers.id

)
SELECT * FROM managers;
id | name | manager_id | job | level

----+----------+------------+-------------------+-------
1 | Adam | | CEO | 1
7 | Ron | 1 | Vice President | 2
6 | Vinicius | 7 | Database Engineer | 3
5 | Paola | 7 | CTO | 3
4 | Divya | 5 | Manager | 4
2 | Luis | 4 | Senior Developer | 5
3 | Shawn | 4 | Developer | 5

(7 rows)

Recursive part

Non-Recursive part

Recursive Hierarchy

© 2022, Amazon Web Services, Inc. or its affiliates.

postgres=> WITH RECURSIVE managers AS (
SELECT id, name, manager_id, job, 1 AS level
FROM employees
WHERE id = 1

UNION
SELECT e.id, e.name, e.manager_id, e.job, managers.level + 1 AS level
FROM employees e
JOIN managers ON e.manager_id = managers.id

) SEARCH DEPTH FIRST BY id SET tree
SELECT * FROM managers;

id | name | manager_id | job | level | tree
----+----------+------------+-------------------+-------+-----------------------

1 | Adam | | CEO | 1 | {(1)}
7 | Ron | 1 | Vice President | 2 | {(1),(7)}
5 | Paola | 7 | CTO | 3 | {(1),(7),(5)}
6 | Vinicius | 7 | Database Engineer | 3 | {(1),(7),(6)}
4 | Divya | 5 | Manager | 4 | {(1),(7),(5),(4)}
3 | Shawn | 4 | Developer | 5 | {(1),(7),(5),(4),(3)}
2 | Luis | 4 | Senior Developer | 5 | {(1),(7),(5),(4),(2)}

(7 rows)

Recursive Hierarchy

Postgres 14 feature

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

What is “Materialized” for
CTEs?

© 2022, Amazon Web Services, Inc. or its affiliates.

What’s “Materialized” for CTEs?

CTE

Primary
Statement

Executor

Temporary
table1

2

PlannerQuery

Primary Select

CTE call 1
CTE call 2
CTE call 3

Execution Plan

© 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation before version 12

Always materialized

Never inlined
CTE

Primary
Statement

Executor

1

2

PlannerQuery

Execution Plan

Result

© 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation in version 12+

Conditional materialization

Planner considers inlining

CTE
Primary

Statement ExecutorPlannerQuery

Execution Plan

Result

© 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation in version 12+

1 2 3

= Materialize

© 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation version 12+ : Explicitly
mention ”Materialize”

© 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation version 12+ : Explicitly
mention ”Materialize”

Important :
Know your

indexes!

© 2022, Amazon Web Services, Inc. or its affiliates.

postgres=> explain
WITH pgc_cte AS (
SELECT * FROM pg_class
)
SELECT * FROM pgc_cte AS pgc_cte1
JOIN pgc_cte AS pgc_cte2 ON pgc_cte1.relname = pgc_cte2.relname
WHERE pgc_cte2.relname = 'pg_class';

QUERY PLAN

Nested Loop (cost=17.60..38.36 rows=4 width=472)
CTE pgc_cte
-> Seq Scan on pg_class (cost=0.00..17.60 rows=460 width=279)

-> CTE Scan on pgc_cte pgc_cte1 (cost=0.00..10.35 rows=2 width=236)
Filter: (relname = 'pg_class'::name)

-> CTE Scan on pgc_cte pgc_cte2 (cost=0.00..10.35 rows=2 width=236)
Filter: (relname = 'pg_class'::name)

(7 rows)

CTE computation version 12+ Multiple Reference

© 2022, Amazon Web Services, Inc. or its affiliates.

postgres=> explain
WITH pgc_cte AS NOT MATERIALIZED (
SELECT * FROM pg_class
)
SELECT * FROM pgc_cte AS pgc_cte1
JOIN pgc_cte AS pgc_cte2 ON pgc_cte1.relname = pgc_cte2.relname
WHERE pgc_cte2.relname = 'pg_class';

QUERY PLAN
--
Nested Loop (cost=0.55..16.59 rows=1 width=558)
-> Index Scan using pg_class_relname_nsp_index on pg_class (cost=0.27..8.29 rows=1 width=279)

Index Cond: (relname = 'pg_class'::name)
-> Index Scan using pg_class_relname_nsp_index on pg_class pg_class_1 (cost=0.27..8.29 rows=1

width=279)
Index Cond: (relname = 'pg_class'::name)

(5 rows)

CTE computation version 12+ : Multiple Reference

But…we can use NOT MATERIALIZED

© 2022, Amazon Web Services, Inc. or its affiliates.

CTE computation version 12+ : Inlining

Version 11

Version 12

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Usage and impact of
Materialized CTEs

© 2022, Amazon Web Services, Inc. or its affiliates.

Usage and Impact of Materializing CTEs

• It can avoid duplicate computation of an expensive WITH query

• Act as an “optimization fence” – black box to the planner

• Materialization itself can be a bit costly

• Indexes cannot be used efficiently after Materializing CTEs

© 2022, Amazon Web Services, Inc. or its affiliates.

with cte_items as (
select distinct c.p_id as p_id, ps.ps_sk as ps_sk from ra.staging_nd_mk_c c join
ra_report.v_ps ps on ps.p_id::integer=c.cm_id and c.p_cdr=‘NATIONAL’
)
Select

Going back to the customer question

Existing SQL on version 10

with cte_items as MATERIALIZED (
select distinct c.p_id as p_id, ps.ps_sk as ps_sk from ra.staging_nd_mk_c c join ra_report.v_ps
ps on ps.p_id::integer=c.cm_id and c.p_cdr=‘NATIONAL’
)
Select

Revised SQL on version 13

PG13 execution time with “MATERIALIZED” : 3m 28s
PG13 execution time without “MATERIALIZED”: 48s

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Sample Uses of CTEs

© 2022, Amazon Web Services, Inc. or its affiliates.

Autovacuum Eligible
WITH vbt AS (SELECT setting AS autovacuum_vacuum_threshold FROM pg_settings WHERE name =
'autovacuum_vacuum_threshold’),

vsf AS (SELECT setting AS autovacuum_vacuum_scale_factor FROM pg_settings WHERE name =
'autovacuum_vacuum_scale_factor'),

fma AS (SELECT setting AS autovacuum_freeze_max_age FROM pg_settings WHERE name = 'autovacuum_freeze_max_age’),

sto AS (select opt_oid, split_part(setting, '=', 1) as param,split_part(setting, '=', 2) as value from (select oid
opt_oid,unnest(reloptions) setting from pg_class) opt)
SELECT '"'||ns.nspname||'"."'||c.relname||'"' as relation,pg_size_pretty(pg_table_size(c.oid)) as
table_size,age(relfrozenxid) as xid_age, coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
autovacuum_freeze_max_age,
(coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) * c.reltuples)
AS autovacuum_vacuum_tuples, n_dead_tup as dead_tuples FROM
pg_class c join pg_namespace ns on ns.oid = c.relnamespace
join pg_stat_all_tables stat on stat.relid = c.oid join vbt on (1=1) join vsf on (1=1) join fma on (1=1)
left join sto cvbt on cvbt.param = 'autovacuum_vacuum_threshold' and c.oid = cvbt.opt_oid
left join sto cvsf on cvsf.param = 'autovacuum_vacuum_scale_factor' and c.oid = cvsf.opt_oid
left join sto cfma on cfma.param = 'autovacuum_freeze_max_age' and c.oid = cfma.opt_oid
WHERE c.relkind = 'r' and nspname <> 'pg_catalog'
AND (age(relfrozenxid) >= coalesce(cfma.value::float, autovacuum_freeze_max_age::float)
OR coalesce(cvbt.value::float, autovacuum_vacuum_threshold::float) +
coalesce(cvsf.value::float,autovacuum_vacuum_scale_factor::float) *
c.reltuples <= n_dead_tup)

ORDER BY age(relfrozenxid) DESC LIMIT 10;

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.Autovacuum.html

© 2022, Amazon Web Services, Inc. or its affiliates.

Autovacuum Eligible

relation | table_size | xid_age | autovacuum_freeze_max_age | autovacuum_vacuum_tuples | dead_tuples
--+------------+---------+---------------------------+--------------------------+-------------
"public"."employees" | 8192 bytes | 634 | 200000000 | 869.2 | 0
"public"."mytable" | 2888 kB | 574 | 200000000 | 295781.2 | 81329
"public"."spatial_ref_sys" | 6976 kB | 572 | 200000000 | 714392.4 | 0
"hint_plan"."hints" | 8192 bytes | 572 | 200000000 | 869.2 | 0

(4 rows)

(cont.)

© 2022, Amazon Web Services, Inc. or its affiliates.

XID Wrap Estimate

WITH max_age AS (SELECT 2000000000 as max_old_xid , setting AS
autovacuum_freeze_max_age FROM pg_catalog.pg_settings
WHERE name = 'autovacuum_freeze_max_age') ,

per_database_stats AS (SELECT datname , m.max_old_xid::int ,
m.autovacuum_freeze_max_age::int , age(d.datfrozenxid) AS oldest_xid
FROM pg_catalog.pg_database d JOIN max_age m ON (true) WHERE
d.datallowconn)

SELECT max(oldest_xid) AS oldest_xid ,
max(ROUND(100*(oldest_xid/max_old_xid::float))) AS
percent_towards_wraparound
, max(ROUND(100*(oldest_xid/autovacuum_freeze_max_age::float))) AS

percent_towards_emergency_autovac
FROM per_database_stats ;

https://github.com/awslabs/pg-collector/blob/main/pg_collector.sql#L212

© 2022, Amazon Web Services, Inc. or its affiliates.

XID Wrap Estimate

oldest_xid | percent_towards_wraparound | percent_towards_emergency_autovac
------------+----------------------------+-----------------------------------

166708621 | 8 | 83
(1 row)

(cont.)

© 2022, Amazon Web Services, Inc. or its affiliates.

Index Size and Info
WITH index_size_info as
(
SELECT
schemaname,relname as "Table",
indexrelname AS indexname,
indexrelid,
pg_relation_size(indexrelid) index_size_byte,
pg_size_pretty(pg_relation_size(indexrelid)) AS index_size
FROM pg_catalog.pg_statio_all_indexes ORDER BY 1,4 desc)
Select a.schemaname,
a.relname as "Table_Name",
a.indexrelname AS indexname,
b.index_size,
a.idx_scan,
a.idx_tup_read,
a.idx_tup_fetch
from pg_stat_all_indexes a , index_size_info b
where a.idx_scan >0
and a.indexrelid=b.indexrelid
and a.schemaname not in ('pg_catalog')
order by b.index_size_byte desc,a.idx_scan asc ;

https://github.com/awslabs/pg-collector/blob/main/pg_collector.sql#L1172

© 2022, Amazon Web Services, Inc. or its affiliates.

Index Size and Info

schemaname | Table_Name | indexname | index_size | idx_scan | idx_tup_read | idx_tup_fetch
------------+-----------------+-----------------------+------------+----------+--------------+---------------
public | big_table | big_table_s_idx | 21 MB | 1 | 1 | 1
pg_toast | pg_toast_432944 | pg_toast_432944_index | 1936 kB | 136078 | 128136 | 128136
public | mytable | mytable_id | 1336 kB | 3 | 20008 | 4
pg_toast | pg_toast_430903 | pg_toast_430903_index | 104 kB | 2005 | 10 | 10
public | employees | employee_idx | 16 kB | 1 | 1 | 1
pg_toast | pg_toast_3079 | pg_toast_3079_index | 16 kB | 1 | 0 | 0
pg_toast | pg_toast_1255 | pg_toast_1255_index | 16 kB | 15 | 20 | 20
public | blog | blog_pkey | 16 kB | 94 | 4 | 4
pg_toast | pg_toast_2619 | pg_toast_2619_index | 16 kB | 194 | 247 | 247
pg_toast | pg_toast_2618 | pg_toast_2618_index | 16 kB | 234 | 773 | 773
(10 rows)

(cont.)

© 2022, Amazon Web Services, Inc. or its affiliates.

Should I use CTE’s?

• Will a subquery be worse?

• Will using temp tables be better?

• Will MATERIALIZE help or hurt?

• Will a view/materialized view be better?

As with most tuning decisions….it depends!

© 2022, Amazon Web Services, Inc. or its affiliates.

All of this is great. I'm kinda uneasy about the fact that by default
CTEs will be run in NOT MATERIALIZED way, and if you want to
preserve older way of working, you have to modify your queries. But –
it's definitely a progress, so I can't really complain.

Thanks to all involved, great work.

- Hubert “depesz” Lubaczewski
https://www.depesz.com/2019/02/19/waiting-for-postgresql-12-allow-user-control-of-cte-materialization-and-change-the-default-behavior/

CTE’s continue to improve

© 2022, Amazon Web Services, Inc. or its affiliates.

Thank you!

© 2022, Amazon Web Services, Inc. or its affiliates.

