
Migration validation made
easy with Ora2Pg

PgConf.eu – Berlin 2022

We are going to cover

▷ Validation of data type.

▷ Validation of the objects migrated.

▷ Validation of data.

▷ Validation of stored procedures.

1.
Introducing

4

Gilles DAROLD
CTO at MigOps Inc

Author of Ora2Pg, pgBadger, pgFormatter, ….

MigOps Inc
Company specialized in Support and Migration to PostgreSQL

▷ Sponsors the development of Ora2Pg and others tools at
https://github.com/MigOpsRepos/ and https://github.com/darold/

Contact : https://www.migops.com/contact-us/

https://github.com/MigOpsRepos/
https://github.com/darold/

Ora2Pg

Oracle/MySQL to PostgreSQL
Migration tool

First version May 05 2001

Version 23.2 released October 08 2022

Feedback

“ora2pg made our 6TB (mostly XML and LOB) conversion
 from on-prem Oracle to AWS RDS PostgreSQL flawless
 and relatively painless, since it's easy to tune for large
 (up to 135MB) and small (128KB) objects. It's flexibility
 allowed me to optimize threads for various size LOBs,
 while VIEW_AS_TABLE let me chop multi-TB tables into
 manageable chunks.”

Ron Johnson
Senior DBA

Migration to
PostgreSQL
The Steps

Steps of a migration

Assessment/Analyze Analysis of the feasibility and the migration effort

Migration
Implementation of tasks deduced from the analysis, migration of the
schema, data, SQL, stored procedures and the application

Testing
Testing of migrated objects and data, testing of the application, batches
and the complete workflow

Performances
Analyze performance issues and bring fixes, either at SQL, PostgreSQL
or application level

Training
Teams must be trained in the new RDBMS according to the needs of the
company

Support
24/7 support for incident resolution, operational implementation
assistance or response to operational questions

Testing

This is the key to the success of your migration

▷ Test, test and test again!

Take the opportunity to integrate more unit tests

Validate the steps to switchover in production several
times

2.
Tests on objects

TYPES

SEQUENCES

TABLES

INDEXES

CONSTRAINTS

TRIGGERS

VIEWS

MATERIALIZED VIEWS

Type of objects

PARTITIONS

FUNCTIONS

PROCEDURES

TABLESPACES

PACKAGES => SCHEMA

DBLINKS => dblink/oracle_fdw

SYNONYMS => VIEWS

JOBS => pgcron/pg_dbms_job

Validation of data type

Loading part of the data makes it possible to detect
errors. To load a limited amount of data:

WHERE ROWNUM < 10000

▷ Problems of BIGINT vs NUMERIC
▷ RAW(16) ou RAW(32) vs Uuid
▷ Translation to boolean
▷ Column varchar() with length limit
▷ Special case of date vs timestamp

Objects count action

ora2pg -c config/ora2pg.conf -t TEST > test_objects.log

Principle :

▷ Simultaneous connections on the Oracle and the
PostgreSQL database

▷ Extraction and counting of each type of object
▷ Comparison between the two extractions and status
▷ Report errors if there are any

Count per object type

▷ TABLES
▷ TRIGGERS
▷ VIEWS
▷ SEQUENCES with LAST_VALUE check
▷ Users data types
▷ EXTERNAL TABLE (ALL_EXTERNAL_TABLE vs FOREIGN TABLE)

Global count of the number of functions:

○ PACKAGES
○ FUNCTIONS
○ PROCEDURES

Count per table

▷ INDEXES
▷ UNIQUE CONSTRAINTS
▷ PRIMARY KEYS
▷ CHECK CONSTRAINTS
▷ NOT NULL CONSTRAINTS
▷ COLUMNS with DEFAULT VALUE
▷ IDENTITY COLUMN
▷ FOREIGN KEYS
▷ TRIGGERS
▷ PARTITIONS

▷ COLUMNS count

Examples

Example of the TEST action with the migration of the HR database

https://www.ora2pg.com/TEST_example.txt

Some errors generated by the drop of some constraints in

the destination database

https://www.ora2pg.com/TEST_example_error.txt

https://www.ora2pg.com/TEST_example.txt
https://www.ora2pg.com/TEST_example_error.txt

Checking the number of lines

ora2pg -c config/ora2pg.conf -t TEST --count_rows

Count the number of rows in each table while
counting objects.

Dedicated action to only count the lines:

ora2pg -c config/ora2pg.conf -t TEST_COUNT -P 8

(useful after a second data import)

Example

[TEST ROWS COUNT]

ORACLE:actor:200

POSTGRES:actor:200

ORACLE:address:603

POSTGRES:address:603

ORACLE:film_actor:5462

POSTGRES:film_actor:5462

ORACLE:film_category:1000

POSTGRES:film_category:1000

ORACLE:film_text:1000

POSTGRES:film_text:1000

(...)

[ERRORS ROWS COUNT]

OK, Oracle and PostgreSQL have the same number of rows.

3.
Test of views

Checking views

ora2pg -c config/ora2pg.conf -t TEST_VIEW

Counts the number of rows returned by each view

No control of the returned data, only the number of lines.

Application-level validation or unitary tests are required.

Example

[UNITARY TEST OF VIEWS]

ORACLE:actor_info:200

POSTGRES:actor_info:200

ORACLE:customer_list:599

POSTGRES:customer_list:599

ORACLE:film_list:997

POSTGRES:film_list:997

ORACLE:nicer_but_slower_film_list:997

POSTGRES:nicer_but_slower_film_list:997

ORACLE:sales_by_film_category:16

POSTGRES:sales_by_film_category:16

ORACLE:sales_by_store:2

POSTGRES:sales_by_store:2

ORACLE:staff_list:2

POSTGRES:staff_list:2

4.
Test of Data

New since version 23.0 of Ora2Pg

Data migration time

Reduce the cut-off window necessary for the switch to production.

▷ Improve data migration time with options:

○ -P : number of tables exported in parallel
○ -J : number of parallel Oracle processes for one table
○ -j : number write process into PostgreSQL per table.

▷ With or without oracle_fdw use (optimum for BLOB with -J)▷ Use LOAD action with -j option to import indexes/constraints▷ Separate archived data and “live” data for TB databases

Data validation

ora2pg -c config/ora2pg.conf -t TEST_DATA -P 8

Checks the values returned by the two RDBMS row by
row.

It uses Foreign Data Wrapper or a direct connection.

A WHERE clause can be applied following the imported data

Prerequisites

Make sure that the columns and their data types in the source
and the destination database match.

▷ Only tables with primary or unique key for ORDER BY,
except initial loading without parallelism

▷ Collation ‘C’ for non numeric unique keys in PostgreSQL

▷ No data change on both side during the check

Data validation

The result of the data validation is stored in a dedicated
file : data_validation.log.

In the current directory or in the one specified using
option -b | --basedir

The errors reported are limited to 10 before stopping the
check for a table in error.

Data validation can be parallelized using option -P |
--parallel

Settings

FDW_SERVER
Name of the foreign server to connect to Oracle. If not defined use a
direct connection to query the tables.

PG_DSN Connection settings to the PostgreSQL database

DATA_VALIDATION_ROWS
Maximum number of lines to test. Default: 10000
A value of 0 causes the validation of all rows in the tables

DATA_VALIDATION_ERROR
By default, the data check of a table stops after 10 faults. This
number can be increased if you want to treat more error in one pass.

PARALLEL_TABLES Parallel data checking per table, uses only 1 process by default.

DATA_VALIDATION_ORDERING
Sorts the data by a unique key, only table with such a key are
checked. If disabled, no sorting all table are checked.

Data validation

Limits:

▷ No multi-schema validation, only schema by schema.

▷ No user defined type data validation (for the moment)

▷ No partition by partition check, only the partitioned
table.

▷ No data validation of views

5.
Differences in structure

How about definition changes ?

When checking, Ora2Pg supports changes of

▷ Destination schema name (PG_SCHEMA)▷ Tables renaming (REPLACE_TABLES)▷ Columns renaming (REPLACE_COLS)▷ Drop of columns (MODIFY_STRUCT)

Example of definition change

Table renaming :

▷ REPLACE_TABLES PRODUCT_TMP:PRODUCTS

Column renaming :

▷ REPLACE_COLS RAW_INFO(UID_COL:COL_UID)

Not exported columns during the migration :

▷ MODIFY_STRUCT RAW_INFO(ID,UID_COL,INFO_COL)

(the RAW_INFO table have other columns in the source database but
 only 3 have been exported)

How about data type differences

When checking, Ora2Pg supports changes of data types

▷ To boolean (REPLACE_AS_BOOLEAN and
BOOLEAN_VALUES)▷ The translation of RAW(16) and RAW(32) in uuid
(default)▷ Remapping of data types translation (DATA_TYPE)

6.
Stored procedures

Test of procedures

Load functions and procedures one by one, correcting
potential syntax errors.

▷ PostgreSQL check the code at execution time

▷ No precompiled or invalid code like in Oracle

▷ Check the stored procedures with plpgsql_check

▷ Found solution for Oracle DBMS modules

plpgsql_check

hr=# CREATE EXTENSION plpgsql_check;

LOAD

hr=# --Check all plpgsql functions in the hr schema

hr=# SELECT p.oid, p.proname, plpgsql_check_function(p.oid)

 FROM pg_catalog.pg_namespace n

 JOIN pg_catalog.pg_proc p ON pronamespace = n.oid

 JOIN pg_catalog.pg_language l ON p.prolang = l.oid

 WHERE l.lanname = 'plpgsql' AND n.nspname = 'hr'

AND p.prorettype <> 2279; /* no trigger function */

plpgsql_check

 oid | proname | plpgsql_check_function
--------+-------------------+---
 315412 | writeefile | warning extra:00000:5:DECLARE:never read variable "lsize"
 315651 | get_ddl | warning extra:00000:unused parameter "errbuf"
 315652 | get_ddl | warning extra:00000:unmodified OUT variable "errbuf"œ
 315653 | apply_visibility | error:42P01:9:SQL statement:relation "public.tmp_status" does not exist
 315653 | apply_visibility | Query: update public.book_rental br
 315653 | apply_visibility | set br.rented = 'Y',
 315653 | apply_visibility | where br.book_id = book_id;

[...]

Execution performances

Some procedures, best in Oracle, may perform poorly in
PostgreSQL.

▷ Detect the source of performance problems with
plprofiler or plpgsql_check

▷ Review the logic of the procedure to optimize it.

▷ pldebugger : PostgreSQL pl/pgsql Debugger API

https://github.com/bigsql/plprofiler/
https://github.com/okbob/plpgsql_check
https://github.com/EnterpriseDB/pldebugger

Unit tests

Check that the results are identical between the two DBMS

Guarantee the stability of the code during the migration and
after.

Tools:

▷ Test scripts using psql and sqlplus▷ Test scripts using Perl DBD::Pg and DBD::Oracle▷ Same using JDBC▷ pgTap, Junit, etc.

Perl test script

use Test::Simple tests => 1;

use DBI;

Test function addition(int, int)

my $dbh = DBI->connect("dbi:Pg:dbname=hr;host=192.168.1.10", 'hr', 'pwd');

my $sth = $dbh->prepare("SELECT addition(100, 45)");

$sth->execute();

my @row = $sth->fetchrow;

$sth->finish();

ok($row[0] == 145, "Test function addition(int, int)");

pgTap

\set account_id 32

\set expire_days 60

BEGIN;

SELECT ok(update_user_account(:account_id::integer, expire_days::integer),

'Call procedure update_user_account');

-- Check changes

PREPARE account_expiration_check AS select expire_days, account_id from accounts where account_id
= :account_id::integer;

PREPARE account_expiration_results AS select :expire_days::integer, :account_id::integer;

SELECT results_eq(

 'account_expiration_check',

 'account_expiration_results',

 'Expiration day should be set for account');

ROLLBACK;

Thanks !
Any questions?
Web: http://www.ora2pg.com/
Email: gilles@darold.net

Post your bug reports, feature requests, contribution to

https://github.com/darold/ora2pg

http://www.ora2pg.com/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42

