Vectors are the new JSON

Jonathan Katz

(he/him/his)
Principal Product Manager — Technical
AWS

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{

"1d": 5432,

"name": "PostgreSqQL",

"description”: "world's most advanced open source
relational database',

"supportedversions": [16, 15, 14, 13, 12]
}

{
"id": 5432,
"name":
"PostgresqQL",

"description":
"world's most advanced
open source relational
database",

"supportedversions":
[16, 15, 14, 13, 12]
ks

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

id

5432

name
description

supportedversions

PostgreSQL
world's most...

[16,15,14,13,12]

{

"id": 5432,
"name":
"PostgresqQL",
"description":
"world's most advanced
open source relational
database",
"supportedversions":
[16, 15, 14, 13, 12]
}

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

T
Timeline of JSON storage
« 2000-2001: JSON invented
« 2004: AJAX model emerges in wider deployments
« 2006: RFC 4627 publishes JSON format
« 2006-2009: JSON-specific data stores emerge
« 2012: PostgreSQL adds support for JSON (text)
« 2013: ECMA-404 standardizes JSON
« 2014: PostgreSQL adds support for JSONB (binary)
« 2017: SQL/JSON standard published
« 2019: PostgreSQL adds SQL/JSON path language
« 2023: PostgreSQL adds SQL/JSON constructors and predicates

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

[0.5, 0.5]

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Magnitude

| [0.5, 0.5] || = v (0.52 + 0.52) = 0.70710

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved

Magnitude

2

Direction

[0.5, 0.5]

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

[0.5, 0.5, 0.5]

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

VECTOR ANALYSIS

. WILLAKRD GInns

EDWIN BID'WELL WILSON, T D

Janrm o o Nl v im Vr Lnarely

NEW YORE CHARIES SCRIENERS SONS

1OSDON T FIYWARD ARNOAD

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

100

o
o o (=]
- — ()
— — (=]
- (=]
(=] o o
- (=4
o (=} (=]
(=] (=] -_
(=] — o
,,// // i /,,,,/,
\ / \
\ |
R
XA
\
| \
J \
,, \ \
, , \
I \
@ o ¢000-0 - - - 900000 -00 90000 - o000 O o - O
° ® X e@c 00 +0::000- ®e - - 200 @:-90 o .o .
@co: - 000 o - 00 00 -0c0-0 - - @00 - 0000 o0 0@ 00 -
[X -0 -00-00 ¢ 0 ¢ o 00 - @0 -0 -) o . [N KRN) °
ooooo 00 - o - ®-0 - -0 0000 -200¢° 20000090000 o - oo -
S—OS—O0O—=—"600 00000000 —O0O0—OO0O0=0000—0—0OS —O0S0S0—00
OO0 ——— S O—OO0—0OOC 50— 5080—000
oRS— =000 = S MW%OH O——— |00m WOOOQW
S—o=2—o50—28c COSoo=0 5885800 =—0R8oR—55080050-50

OO0 - CSOO—0000—=—0—00COO00 —OCO0DOOSSOC0—000—00=C008=

o O O—E0 O—g—0—-20Cx0m—=—0— 0 Oo—— e O —_——
==00g2 coo 00mm0 288" cocoo=5-Ccco opoo-—oo ——
o080 O0Oo—-——goSL0os

OarmO . A ma~ = —_— T ——— N OO e N e ~

Generative Al is powered
by foundation models

Pre-trained on vast amounts of

unstructured data

Contain large number of parameters that make
them capable of learning complex concepts

Can be applied in a wide range of contexts

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Customize FMs using your data for domain

specific tasks

adws
~—

Retrieval Augmented
Generation (RAG)

Configure FM to interact with
your data

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

How much does a blue
elephant vase cost?

KNOWLEDGE
BASES

Product catalog

Price data

FOUNDATION
MODEL

ANSWER

Sdrhye laden ki owse
typically costs $19.99

The role of vectors in RAG

Question & 4 Response

v
0> &

Embeddings Foundational
I model

o
@ 2 3 i
— > ﬂ—» @ — % @ —
Question + Context

PDF Document Embeddings Database e
document chunks
aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

)

Challenges with vectors
« Time to generate embeddings

« Embedding size
—Compression

« Query time

536 d 5|ons
0. 1 231 0] 0.20559
0.24234 0.70543
O 59 t§ 2
Blue eleph :ﬁ
that can ho d up &
o i &3@
0. 70543 O 20551
0.20559 0.59405

1,000,000 => 5.7GB

Approximate nearest neighbor (ANN)

« Find similar vectors without

searching all of them . ‘

« Faster than exact nearest
neighbor

 “Recall” — % of expected results

Recall: 80%

aws
-

T
Questions for choosing a vector storage system

« Where does vector storage fit into my workflow?
« How much data am | storing?

- What matters to me: storage, performance, relevancy, cost?

- What are my tradeoffs: indexing, query time, schema design?

PostgreSQL as a vector store

aWws
2

...
Why use PostgreSQL for vector searches?

. Existing client libraries work without modification
« Convenient to co-locate app + Al/ML data in same database

« PostgreSQL acts as persistent transactional store while working with
other vector search systems

...
Native vector support in PostgreSQL

« ARRAY data type « Cube data type
= Multiple data types (int4, int8, float4, = float8 values
float8) = Euclidean, Manhattan, Chebyshev
= “Unlimited” dimensions distances
= No native distance operations = K-NN GiST index — exact nearest

— Can add using Trusted Language neighbor search

Extensions + PL/Rust » Limited to 100 dimensions
= No native indexing

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

An open source extension that:
adds support for storage, indexing, searching, metadata with choice of distance

/

vector data type
Co-locate with embeddings

Exact nearest neighbor (K-NN)
Approximate nearest neighbor (ANN)

Supports IVFFlat/HNSW indexing Distance operators (<->, <=>, <#>)

github.com/pgvector/pgvector

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

© 2023, Amazon Web Services,

Understanding pgvector performance

1536-dimensional vector HNSW search

35000

N N W
o n o
o o o
o o o
o o o

15000

10000

Transactions/Second (TPS)

5000

/

Speedup (%)

hnsw.ef_search

mm db.r6g.16xlarge mmdb.r7g.16xlarge = ——Speedup (%)

Inc. or its affiliates. All rights reserved.

pgvector distance operations

AN

<-> <=> <H>
Euclidean/L2 Cosine distance Inner product

...
How does pgvector index a vector?

0.0234 0.0253
0.093 0.1007

: R
_0.9123 Valid? Normalized: -0.9380
0.1055 0.1142

¥ Same dimensions?

£ :
7 Magnitude > 0? 7 If not, normalize

...
Indexing methods: IVFFlat and HNSW

« [VFFlat « HNSW
= K-means based = Graph based
= Organize vectors into lists = Organize vectors into
“neighborhoods”

= Requires prepopulated data

* Insert time bounded by # lists | RS JEEtes

» |nsertion time increases as data in
graph increases

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

...
Which search method do | choose?

« Exact nearest neighbors: No index
« Fast indexing: IVFFlat
« Easy to manage: HNSW

 High performance/recall: HNSW

pgvector strategies and best
practices

aWws
2

T,
Best practices for pgvector

Storage strategies
HNSW strategies
IVFFlat strategies

Filtering

pgvector storage strategies

aWws
2

...
Understanding TOAST in PostgreSQL

« TOAST (The Oversized-Attribute Storage Technique) is a mechanism
for storing data larger than 8KB

By default, PostgreSQL “TOASTs" values over 2KB

« 510-dim 4-byte float vector

...
PostgreSQL column storage types

« PLAIN: Data stored inline with table

« EXTENDED: Data stored/compressed in TOAST table when threshold
exceeded (pgvector default)

« EXTERNAL: Data stored in TOAST table when threshold exceeded

« MAIN: Data stored compressed inline with table

Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)
-> Gather Matgas 0st=772135.51..1991670.17 rows=10000002 width=12)

workers Pianned: 6

5.42..775302.08 rows=1666667 width=12)

Sort Key: ((<-> embedding))
-> Parallel Seq Scan on vecs1l28 (cost=0.00..735119.34 rows=1666667

width=12)

128 dimensions

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)
-> Gather Matgas 0st=149970.15..1347330.44 rows=10000116 width=12)

workers Planned: 4
#8970.09..155220.16 rows=2500029 width=12)

Sort Key: (($1 <-> embedding))
-> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029

width=12)

1,536 dimensions

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

...
Strategies for pgvector and TOAST

« Use PLAIN storage
= ALTER TABLE .. ALTER COLUMN ... SET STORAGE PLAIN
= Requires table rewrite (VACUUM FULL) if data already exists
* Limits vector sizes to 2,000 dimensions

. Usemin_parallel_table_scan_size to induce more parallel
workers

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)
-> Gather MaLgs 0st=95704.33..1352239.13 rows=10000111 width=12)
workers Planned: 1
¥H#/704.11..96976.86 rows=909101 width=12)
Sort Key: (($1 <-> embedding))
-> Parallel Seq Scan on vecs1l536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

HNSW strategies

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N1

...
HNSW index building parameters

e M
= Maximum number of bidirectional links between indexed vectors
» Default: 16

« ef_construction

= Number of vectors to maintain in “nearest neighbor” list
= Default: 64

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

. :
Building an HNSW index

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

| & .
Building an HNSW index

Layer 2

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

e

Layer 2

B

uilding an HNSW index

Layer 1

I Building an HNSW index

Layer O

T,
HNSW query parameters

e hnsw.ef_search
= Number of vectors to maintain in “nearest neighbor” list
= Must be greater than or equal to LIMIT

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

T
Querying an HNSW index

Layer 2

Querying an HNSW index

Layer 2

Querying an HNSW index

Layer 1

Querying an HNSW index

Layer 1

Querying an HNSW index

LS e
\.{/\/‘\ /\\w

Layer O

Querying an HNSW index

Layer O

...
Best practices for building HNSW indexes

. Default values (M=16,ef_construction=64) usually work

e (pgvector 0.5.1) Start with empty index and use concurrent writes to
accelerate builds

= INSERT or COPY

Impact of concurrent inserts on HNSW build time

HNSW index build (1,000,000 128-dim vectors)

—— ol

1 2 4 8 16 32 64
Clients

Choosing m and ef_construction

adws
~—

1.1TMM 1536-dim vectors, m=16, ef _search=20

250

200

—

=
(92
o

.

/

100
/

50

Index build (min)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

128 256
ef _construction

B Build Time (min) —Recall

512

Choosing m and ef_construction

TMM 960-dim vectors
800

700

P

o))
o
o

/

U
)
o
\

W
o
o

Index build (min)
D
o
o

200
100
o — N
24 36

16
m

48

mBuild Time (min) —Recall

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

0.9
0.8
0.7
0.6
05 <
04 x
(0c
0.2
0.1

0

...
Performance strategies for HNSW queries

. Index building has biggest impact on performance/recall

= More time spent building increases likelihood of finding best candidates in a
neighborhood

. Increasing hnsw.ef_search increases recall, decreases performance

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat strategies

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N1

...
IVFFlat index building parameters

e |1sts
= Number of “buckets” for organizing vectors
= Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING ivfflat(embedding) WITH (lists=3);

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

T
Building an IVFFlat index

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an IVFFlat index: Assign lists

Querying an IVFFlat index

Eol -

SET i1vfflat.probes TO0 1

SELECT 1d FROM products ORDER BY $1 <-> embedding LIMIT 3

Querying an IVFFlat index

A ol

SET i1vfflat.probes TO 2
SELECT 1d FROM products ORDER BY $1 <-> embedding LIMIT 3

...
Performance strategies for IVFFlat queries

. Increasing 1vfflat.probes increases recall, decreases performance

- Lowering random_page_cost on a per-query basis can induce index
usage

. Set shared_buffers to a value that keeps data (table) in memory

. Increase work_mem on a per-query basis

...
Best practices for building IVFFlat indexes

« Choose value of lists to maximize recall but minimize effort of search
» < TMM vectors: # vectors / 1000
= > TMM vectors: V(# vectors)

« May be necessary to rebuild when adding/modifying vectors in index

« Use parallelism to accelerate build times

How paralteltism works with pgvector IVFFlat

Vectors in
table

aws
-

How parallelism works with pgvector IVFFlat

Vectors in
table

Using parallelism to accelerate IVFFlat builds

140

120

100

Time (s)
S

o))
o

20

aws
-

TMM 768-dim, lists=1000

Serial

Parallel

pgvector filtering strategies

aWws
2

What is filtering?

SELECT 1d

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding
LIMIT 10;

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

...
How filtering impacts ANN queries

« PostgreSQL may choose to not use the index
« Uses an index, but does not return enough results

. Filtering occurs after using the index

...
Do | need an HNSW/IVFFlat index for a filter?

« Does the filter use a B-Tree (or other index) to reduce the data set?
« How many rows does the filter remove?

« Do | want exact results or approximate results?

T,
Filtering strategies

« Partial index CREATE INDEX ON docs
USING hnsw(embedding vector_12_ops)

N WHERE category_id = 7;
- Partition

CREATE TABLE docs_cat?
PARTITION OF docs
FOR VALUES 1IN (7);

CREATE INDEX ON docs_cat?
USING hnsw(embedding vector_12_ops);

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

Filtering with existing embeddings

SELECT *
FROM (
(SELECT 1d,
embedding <=> (SELECT embedding FROM documents WHERE 1id
FROM documents
ORDER BY dist LIMIT 5)
UNION
(SELECT 1d,
embedding <=> (SELECT embedding FROM documents WHERE 1id
FROM documents
ORDER BY dist LIMIT 5)
) X
WHERE x.1d NOT IN (1, 2)
ORDER BY Xx.dist LIMIT 5;

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
S

1 LIMIT 1) AS dist

2 LIMIT 1) AS dist

Looking ahead

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
N1

T

pgvector roadmap

o Parallel builds for HNSW (; targeted for pgvector 0.6.0)
- Enhanced index-based filtering/HQANN (in progress)

« More data types per dimension (float2, uint8) (in progress)

« Product quantization/scalar quantization

« Parallel query

...
Conclusion

o Like JSON, a vector is just a data type.

« Primary design decision: query performance and recall

« Determine where to invest: storage, compute, indexing strategy

« Plan for today and tomorrow: pgvector is rapidly innovating

aWS’ © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

.I ' [roewn] Please complete t
hank you0 _Di% survey in the mot

Jonathan Katz
jkatz@amazon.com

aws

> © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

