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{

"id": 5432,

"name": "PostgreSQL",

"description": "World's most advanced open source 
relational database",

"supportedVersions": [16, 15, 14, 13, 12]

}
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supportedVersions [16,15,14,13,12]
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Timeline of JSON storage
• 2000-2001: JSON invented
• 2004: AJAX model emerges in wider deployments
• 2006: RFC 4627 publishes JSON format
• 2006-2009: JSON-specific data stores emerge
• 2012: PostgreSQL adds support for JSON (text)
• 2013: ECMA-404 standardizes JSON
• 2014: PostgreSQL adds support for JSONB (binary)
• 2017: SQL/JSON standard published
• 2019: PostgreSQL adds SQL/JSON path language
• 2023: PostgreSQL adds SQL/JSON constructors and predicates
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Magnitude

|| [0.5, 0.5] || = √ (0.52 + 0.52) = 0.70710
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Pre-trained on vast amounts of 
unstructured data

Contain large number of parameters that make 
them capable of learning complex concepts

Can be applied in a wide range of contexts

Customize FMs using your data for domain 
specific tasks

Generative AI is powered
by foundation models
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Retrieval Augmented 
Generation (RAG)

Configure FM to interact with 
your data

A N S W E RQ U E S T I O N

K N O W L E D G E  
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue 
elephant vase cost?

Product catalog

Price data

A blue elephant vase 
typically costs $19.99
Sorry, I don't know
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The role of vectors in RAG
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Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

Blue elephant vase 
that can hold up to 
three plants in it, 
hand painted…

0.1234
0.1231
0.1232
0.9005
0.2489

1536 dimensions

4-byte floats

6152B => 6KiB

0.12310
0.24234
0.59405
0.23430
0.23432
0.20551
0.70543
0.20559

0.20559
0.70543
0.23432
0.24234
0.23430
0.12310
0.20551
0.59405

1,000,000 => 5.7GB
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Approximate nearest neighbor (ANN)

• Find similar vectors without 
searching all of them

• Faster than exact nearest 
neighbor

• “Recall” – % of expected results

Recall: 80%
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Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

• How much data am I storing?

• What matters to me: storage, performance, relevancy, cost?

• What are my tradeoffs: indexing, query time, schema design?
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PostgreSQL as a vector store
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Why use PostgreSQL for vector searches?

• Existing client libraries work without modification

• Convenient to co-locate app + AI/ML data in same database 

• PostgreSQL acts as persistent transactional store while working with 
other vector search systems
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Native vector support in PostgreSQL

• ARRAY data type
§ Multiple data types (int4, int8, float4, 

float8)

§ “Unlimited” dimensions
§ No native distance operations

– Can add using Trusted Language 
Extensions + PL/Rust

§ No native indexing

• Cube data type
§ float8 values

§ Euclidean, Manhattan, Chebyshev 
distances

§ K-NN GiST index – exact nearest 
neighbor search

§ Limited to 100 dimensions
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What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Supports IVFFlat/HNSW indexing Distance operators (<->, <=>, <#>)

Exact nearest neighbor (K-NN)
Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector
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Understanding pgvector performance
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pgvector distance operations

<->
Euclidean/L2

<=>
Cosine distance

<#>
Inner product
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How does pgvector index a vector?

0.0234
0.093

 -0.9123
0.1055

Valid?

✅ Same dimensions?
✅ Magnitude > 0?

Normalized?

🛠 If not, normalize

0.0253
0.1007

 -0.9880
0.1142
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Indexing methods: IVFFlat and HNSW

• IVFFlat
§ K-means based

§ Organize vectors into lists

§ Requires prepopulated data
§ Insert time bounded by # lists

• HNSW
§ Graph based

§ Organize vectors into 
“neighborhoods”

§ Iterative insertions

§ Insertion time increases as data in 
graph increases 
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Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat

• Easy to manage: HNSW

• High performance/recall: HNSW
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pgvector strategies and best 
practices
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Best practices for pgvector

Storage strategies

HNSW strategies

IVFFlat strategies

Filtering
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pgvector storage strategies
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Understanding TOAST in PostgreSQL

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism 
for storing data larger than 8KB

• By default, PostgreSQL “TOASTs” values over 2KB

• 510-dim 4-byte float vector
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PostgreSQL column storage types

• PLAIN: Data stored inline with table

• EXTENDED: Data stored/compressed in TOAST table when threshold 
exceeded (pgvector default)

• EXTERNAL: Data stored in TOAST table when threshold exceeded

• MAIN: Data stored compressed inline with table
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Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

Workers Planned: 6

-> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

Sort Key: ((<-> embedding))

-> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667
width=12)

128 dimensions
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Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

Workers Planned: 4

-> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029
width=12)

1,536 dimensions
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Strategies for pgvector and TOAST

• Use PLAIN storage
§ ALTER TABLE … ALTER COLUMN ... SET STORAGE PLAIN

§ Requires table rewrite (VACUUM FULL) if data already exists

§ Limits vector sizes to 2,000 dimensions

• Use min_parallel_table_scan_size to induce more parallel 
workers
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Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

Workers Planned: 11

-> Sort (cost=94704.11..96976.86 rows=909101 width=12)

Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1
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HNSW strategies
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HNSW index building parameters

• m
§ Maximum number of bidirectional links between indexed vectors

§ Default: 16

• ef_construction
§ Number of vectors to maintain in “nearest neighbor” list

§ Default: 64
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Building an HNSW index
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 2
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Building an HNSW index

Layer 1
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Building an HNSW index

Layer 0
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HNSW query parameters

• hnsw.ef_search
§ Number of vectors to maintain in “nearest neighbor” list

§ Must be greater than or equal to LIMIT
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 2
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 1
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Querying an HNSW index

Layer 0
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Querying an HNSW index

Layer 0
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Best practices for building HNSW indexes

• Default values (M=16,ef_construction=64) usually work

• (pgvector 0.5.1) Start with empty index and use concurrent writes to 
accelerate builds
§ INSERT or COPY
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Impact of concurrent inserts on HNSW build time
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Choosing m and ef_construction
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Choosing m and ef_construction
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Performance strategies for HNSW queries

• Index building has biggest impact on performance/recall
§ More time spent building increases likelihood of finding best candidates in a 

neighborhood

• Increasing hnsw.ef_search increases recall, decreases performance
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IVFFlat strategies
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IVFFlat index building parameters

• lists
§ Number of “buckets” for organizing vectors

§ Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING ivfflat(embedding) WITH (lists=3);
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Building an IVFFlat index
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Building an IVFFlat index: Assign lists
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Querying an IVFFlat index

SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3
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Querying an IVFFlat index

SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3
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Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases performance

• Lowering random_page_cost on a per-query basis can induce index 
usage

• Set shared_buffers to a value that keeps data (table) in memory

• Increase work_mem on a per-query basis
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Best practices for building IVFFlat indexes

• Choose value of lists to maximize recall but minimize effort of search
§ < 1MM vectors: # vectors / 1000

§ > 1MM vectors: √(# vectors)

• May be necessary to rebuild when adding/modifying vectors in index

• Use parallelism to accelerate build times
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How parallelism works with pgvector IVFFlat

Vectors in 
table

List

List

List

Assign to listSequential scan
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How parallelism works with pgvector IVFFlat

Vectors in 
table

List

List

List

Assign to listParallel scan

Assign to listParallel scan

Assign to listParallel scan
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Using parallelism to accelerate IVFFlat builds 
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pgvector filtering strategies
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What is filtering?

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding

LIMIT 10;
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How filtering impacts ANN queries

• PostgreSQL may choose to not use the index

• Uses an index, but does not return enough results

• Filtering occurs after using the index
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Do I need an HNSW/IVFFlat index for a filter?

• Does the filter use a B-Tree (or other index) to reduce the data set?

• How many rows does the filter remove?

• Do I want exact results or approximate results?
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Filtering strategies

• Partial index

• Partition

CREATE INDEX ON docs

USING hnsw(embedding vector_l2_ops)

WHERE category_id = 7;

---

CREATE TABLE docs_cat7

PARTITION OF docs

FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

USING hnsw(embedding vector_l2_ops);
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Filtering with existing embeddings
SELECT *

FROM (

(SELECT id,

embedding <=> (SELECT embedding FROM documents WHERE id = 1 LIMIT 1) AS dist

FROM documents

ORDER BY dist LIMIT 5)

UNION

(SELECT id,

embedding <=> (SELECT embedding FROM documents WHERE id = 2 LIMIT 1) AS dist

FROM documents

ORDER BY dist LIMIT 5)

) x

WHERE x.id NOT IN (1, 2)

ORDER BY x.dist LIMIT 5;
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Looking ahead
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pgvector roadmap

• Parallel builds for HNSW (committed; targeted for pgvector 0.6.0)

• Enhanced index-based filtering/HQANN (in progress)

• More data types per dimension (float2, uint8) (in progress)

• Product quantization/scalar quantization

• Parallel query
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Conclusion

• Like JSON, a vector is just a data type.

• Primary design decision: query performance and recall

• Determine where to invest: storage, compute, indexing strategy

• Plan for today and tomorrow: pgvector is rapidly innovating 
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Thank you!
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Please complete the session 
survey in the mobile appThank you!
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Please complete the session 
survey in the mobile app

Jonathan Katz
jkatz@amazon.com


