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Timeline of JSON storage
« 2000-2001: JSON invented
« 2004: AJAX model emerges in wider deployments
« 2006: RFC 4627 publishes JSON format
« 2006-2009: JSON-specific data stores emerge
« 2012: PostgreSQL adds support for JSON (text)
« 2013: ECMA-404 standardizes JSON
« 2014: PostgreSQL adds support for JSONB (binary)
« 2017: SQL/JSON standard published
« 2019: PostgreSQL adds SQL/JSON path language
« 2023: PostgreSQL adds SQL/JSON constructors and predicates
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Magnitude

| [0.5, 0.5] || = v (0.52 + 0.52) = 0.70710
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Generative Al is powered
by foundation models

Pre-trained on vast amounts of

unstructured data

Contain large number of parameters that make
them capable of learning complex concepts

Can be applied in a wide range of contexts
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Customize FMs using your data for domain

specific tasks
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Retrieval Augmented
Generation (RAG)

Configure FM to interact with
your data
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BASES
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The role of vectors in RAG
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Challenges with vectors
« Time to generate embeddings

« Embedding size
—Compression

« Query time
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1,000,000 => 5.7GB




Approximate nearest neighbor (ANN)

« Find similar vectors without

searching all of them . ‘

« Faster than exact nearest
neighbor

 “Recall” — % of expected results

Recall: 80%
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Questions for choosing a vector storage system

« Where does vector storage fit into my workflow?
« How much data am | storing?

- What matters to me: storage, performance, relevancy, cost?

- What are my tradeoffs: indexing, query time, schema design?




PostgreSQL as a vector store
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...
Why use PostgreSQL for vector searches?

. Existing client libraries work without modification
« Convenient to co-locate app + Al/ML data in same database

« PostgreSQL acts as persistent transactional store while working with
other vector search systems



...
Native vector support in PostgreSQL

« ARRAY data type « Cube data type
= Multiple data types (int4, int8, float4, = float8 values
float8) = Euclidean, Manhattan, Chebyshev
= “Unlimited” dimensions distances
= No native distance operations = K-NN GiST index — exact nearest

— Can add using Trusted Language neighbor search

Extensions + PL/Rust » Limited to 100 dimensions
= No native indexing
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What is pgvector?

An open source extension that:
adds support for storage, indexing, searching, metadata with choice of distance

/

vector data type
Co-locate with embeddings

Exact nearest neighbor (K-NN)
Approximate nearest neighbor (ANN)

Supports IVFFlat/HNSW indexing Distance operators (<->, <=>, <#>)

github.com/pgvector/pgvector
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Understanding pgvector performance

1536-dimensional vector HNSW search
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pgvector distance operations

AN

<-> <=> <H>
Euclidean/L2 Cosine distance Inner product




...
How does pgvector index a vector?

0.0234 0.0253
0.093 0.1007

: R
_0.9123 Valid? Normalized: -0.9380
0.1055 0.1142

¥ Same dimensions?

£ :
7 Magnitude > 0? 7 If not, normalize



...
Indexing methods: IVFFlat and HNSW

« [VFFlat « HNSW
= K-means based = Graph based
= Organize vectors into lists = Organize vectors into
“neighborhoods”

= Requires prepopulated data

* Insert time bounded by # lists | RS JEEtes

» |nsertion time increases as data in
graph increases
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...
Which search method do | choose?

« Exact nearest neighbors: No index
« Fast indexing: IVFFlat
« Easy to manage: HNSW

 High performance/recall: HNSW



pgvector strategies and best
practices
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Best practices for pgvector

Storage strategies
HNSW strategies
IVFFlat strategies

Filtering



pgvector storage strategies
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Understanding TOAST in PostgreSQL

« TOAST (The Oversized-Attribute Storage Technique) is a mechanism
for storing data larger than 8KB

By default, PostgreSQL “TOASTs" values over 2KB

« 510-dim 4-byte float vector



...
PostgreSQL column storage types

« PLAIN: Data stored inline with table

« EXTENDED: Data stored/compressed in TOAST table when threshold
exceeded (pgvector default)

« EXTERNAL: Data stored in TOAST table when threshold exceeded

« MAIN: Data stored compressed inline with table



Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)
-> Gather Matgas 0st=772135.51..1991670.17 rows=10000002 width=12)

workers Pianned: 6

5.42..775302.08 rows=1666667 width=12)

Sort Key: ((<-> embedding))
-> Parallel Seq Scan on vecs1l28 (cost=0.00..735119.34 rows=1666667

width=12)

128 dimensions
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Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)
-> Gather Matgas 0st=149970.15..1347330.44 rows=10000116 width=12)

workers Planned: 4
#8970.09..155220.16 rows=2500029 width=12)

Sort Key: (($1 <-> embedding))
-> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029

width=12)

1,536 dimensions
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...
Strategies for pgvector and TOAST

« Use PLAIN storage
= ALTER TABLE .. ALTER COLUMN ... SET STORAGE PLAIN
= Requires table rewrite (VACUUM FULL) if data already exists
* Limits vector sizes to 2,000 dimensions

. Usemin_parallel_table_scan_size to induce more parallel
workers
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Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)
-> Gather MaLgs 0st=95704.33..1352239.13 rows=10000111 width=12)
workers Planned: 1
¥H#/704.11..96976.86 rows=909101 width=12)
Sort Key: (($1 <-> embedding))
-> Parallel Seq Scan on vecs1l536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1
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HNSW strategies
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...
HNSW index building parameters

e M
= Maximum number of bidirectional links between indexed vectors
» Default: 16

« ef_construction

= Number of vectors to maintain in “nearest neighbor” list
= Default: 64
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Building an HNSW index
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| & .
Building an HNSW index

Layer 2
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Building an HNSW index

e

Layer 2
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uilding an HNSW index

Layer 1



I Building an HNSW index

Layer O



T,
HNSW query parameters

e hnsw.ef_search
= Number of vectors to maintain in “nearest neighbor” list
= Must be greater than or equal to LIMIT
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Querying an HNSW index

Layer 2



Querying an HNSW index

Layer 2



Querying an HNSW index

Layer 1



Querying an HNSW index

Layer 1



Querying an HNSW index
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Querying an HNSW index

Layer O



...
Best practices for building HNSW indexes

. Default values (M=16,ef_construction=64) usually work

e (pgvector 0.5.1) Start with empty index and use concurrent writes to
accelerate builds

= INSERT or COPY



Impact of concurrent inserts on HNSW build time

HNSW index build (1,000,000 128-dim vectors)
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Choosing m and ef_construction
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Choosing m and ef_construction
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...
Performance strategies for HNSW queries

. Index building has biggest impact on performance/recall

= More time spent building increases likelihood of finding best candidates in a
neighborhood

. Increasing hnsw.ef_search increases recall, decreases performance
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IVFFlat strategies
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...
IVFFlat index building parameters

e |1sts
= Number of “buckets” for organizing vectors
= Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING ivfflat(embedding) WITH (lists=3);
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Building an IVFFlat index
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Building an IVFFlat index: Assign lists



Querying an IVFFlat index

Eol -

SET i1vfflat.probes TO0 1

SELECT 1d FROM products ORDER BY $1 <-> embedding LIMIT 3



Querying an IVFFlat index

A ol

SET i1vfflat.probes TO 2
SELECT 1d FROM products ORDER BY $1 <-> embedding LIMIT 3



...
Performance strategies for IVFFlat queries

. Increasing 1vfflat.probes increases recall, decreases performance

- Lowering random_page_cost on a per-query basis can induce index
usage

. Set shared_buffers to a value that keeps data (table) in memory

. Increase work_mem on a per-query basis



...
Best practices for building IVFFlat indexes

« Choose value of lists to maximize recall but minimize effort of search
» < TMM vectors: # vectors / 1000
= > TMM vectors: V(# vectors)

« May be necessary to rebuild when adding/modifying vectors in index

« Use parallelism to accelerate build times



How paralteltism works with pgvector IVFFlat

Vectors in
table
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How parallelism works with pgvector IVFFlat

Vectors in
table



Using parallelism to accelerate IVFFlat builds
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pgvector filtering strategies
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What is filtering?

SELECT 1d

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding
LIMIT 10;
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How filtering impacts ANN queries

« PostgreSQL may choose to not use the index
« Uses an index, but does not return enough results

. Filtering occurs after using the index



...
Do | need an HNSW/IVFFlat index for a filter?

« Does the filter use a B-Tree (or other index) to reduce the data set?
« How many rows does the filter remove?

« Do | want exact results or approximate results?



T,
Filtering strategies

« Partial index CREATE INDEX ON docs
USING hnsw(embedding vector_12_ops)

N WHERE category_id = 7;
- Partition

CREATE TABLE docs_cat?
PARTITION OF docs
FOR VALUES 1IN (7);

CREATE INDEX ON docs_cat?
USING hnsw(embedding vector_12_ops);
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Filtering with existing embeddings

SELECT *
FROM (
(SELECT 1d,
embedding <=> (SELECT embedding FROM documents WHERE 1id
FROM documents
ORDER BY dist LIMIT 5)
UNION
(SELECT 1d,
embedding <=> (SELECT embedding FROM documents WHERE 1id
FROM documents
ORDER BY dist LIMIT 5)
) X
WHERE x.1d NOT IN (1, 2)
ORDER BY Xx.dist LIMIT 5;

aWS © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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1 LIMIT 1) AS dist

2 LIMIT 1) AS dist



Looking ahead
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pgvector roadmap

o Parallel builds for HNSW ( ; targeted for pgvector 0.6.0)
- Enhanced index-based filtering/HQANN (in progress)

« More data types per dimension (float2, uint8) (in progress)

« Product quantization/scalar quantization

« Parallel query



...
Conclusion

o Like JSON, a vector is just a data type.

« Primary design decision: query performance and recall

« Determine where to invest: storage, compute, indexing strategy

« Plan for today and tomorrow: pgvector is rapidly innovating
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