
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Vectors are the new JSON

Jonathan Katz
(he/him/his)
Principal Product Manager – Technical
AWS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{

"id": 5432,

"name": "PostgreSQL",

"description": "World's most advanced open source
relational database",

"supportedVersions": [16, 15, 14, 13, 12]

}

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{

 "id": 5432,
 "name":

"PostgreSQL",
 "description":
"World's most advanced

open source relational
database",

 "supportedVersions":
[16, 15, 14, 13, 12]
}

id 5432

name PostgreSQL

description world's most...

supportedVersions [16,15,14,13,12]

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

{

 "id": 5432,
 "name":

"PostgreSQL",
 "description":
"World's most advanced

open source relational
database",

 "supportedVersions":
[16, 15, 14, 13, 12]
}

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Timeline of JSON storage
• 2000-2001: JSON invented
• 2004: AJAX model emerges in wider deployments
• 2006: RFC 4627 publishes JSON format
• 2006-2009: JSON-specific data stores emerge
• 2012: PostgreSQL adds support for JSON (text)
• 2013: ECMA-404 standardizes JSON
• 2014: PostgreSQL adds support for JSONB (binary)
• 2017: SQL/JSON standard published
• 2019: PostgreSQL adds SQL/JSON path language
• 2023: PostgreSQL adds SQL/JSON constructors and predicates

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

[0.5, 0.5]

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Magnitude

|| [0.5, 0.5] || = √ (0.52 + 0.52) = 0.70710

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Direction

Magnitude

[0.5, 0.5]

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
[0.5, 0.5, 0.5]

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Pre-trained on vast amounts of
unstructured data

Contain large number of parameters that make
them capable of learning complex concepts

Can be applied in a wide range of contexts

Customize FMs using your data for domain
specific tasks

Generative AI is powered
by foundation models

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Retrieval Augmented
Generation (RAG)

Configure FM to interact with
your data

A N S W E RQ U E S T I O N

K N O W L E D G E
B A S E S

F O U N D A T I O N
M O D E L

How much does a blue
elephant vase cost?

Product catalog

Price data

A blue elephant vase
typically costs $19.99
Sorry, I don't know

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The role of vectors in RAG

Document
chunks

EmbeddingsPDF
document

Database

User

Embeddings Foundational
model

1

4

Question

Question + Context

Response

2 3

5

6

7

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges with vectors

• Time to generate embeddings

• Embedding size

• Compression

• Query time

Blue elephant vase
that can hold up to
three plants in it,
hand painted…

0.1234
0.1231
0.1232
0.9005
0.2489

1536 dimensions

4-byte floats

6152B => 6KiB

0.12310
0.24234
0.59405
0.23430
0.23432
0.20551
0.70543
0.20559

0.20559
0.70543
0.23432
0.24234
0.23430
0.12310
0.20551
0.59405

1,000,000 => 5.7GB

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Approximate nearest neighbor (ANN)

• Find similar vectors without
searching all of them

• Faster than exact nearest
neighbor

• “Recall” – % of expected results

Recall: 80%

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Questions for choosing a vector storage system

• Where does vector storage fit into my workflow?

• How much data am I storing?

• What matters to me: storage, performance, relevancy, cost?

• What are my tradeoffs: indexing, query time, schema design?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL as a vector store

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why use PostgreSQL for vector searches?

• Existing client libraries work without modification

• Convenient to co-locate app + AI/ML data in same database

• PostgreSQL acts as persistent transactional store while working with
other vector search systems

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Native vector support in PostgreSQL

• ARRAY data type
§ Multiple data types (int4, int8, float4,

float8)

§ “Unlimited” dimensions
§ No native distance operations

– Can add using Trusted Language
Extensions + PL/Rust

§ No native indexing

• Cube data type
§ float8 values

§ Euclidean, Manhattan, Chebyshev
distances

§ K-NN GiST index – exact nearest
neighbor search

§ Limited to 100 dimensions

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is pgvector?

An open source extension that:

adds support for storage, indexing, searching, metadata with choice of distance

vector data type

Supports IVFFlat/HNSW indexing Distance operators (<->, <=>, <#>)

Exact nearest neighbor (K-NN)
Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding pgvector performance

0%

10%

20%

30%

40%

50%

60%

70%

0

5000

10000

15000

20000

25000

30000

35000

20 40 80 200 400 800

Sp
ee

du
p

(%
)

Tr
an

sa
ct

io
ns

/S
ec

on
d

(T
PS

)

hnsw.ef_search

1536-dimensional vector HNSW search

db.r6g.16xlarge db.r7g.16xlarge Speedup (%)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector distance operations

<->
Euclidean/L2

<=>
Cosine distance

<#>
Inner product

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How does pgvector index a vector?

0.0234
0.093

 -0.9123
0.1055

Valid?

✅ Same dimensions?
✅ Magnitude > 0?

Normalized?

🛠 If not, normalize

0.0253
0.1007

 -0.9880
0.1142

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Indexing methods: IVFFlat and HNSW

• IVFFlat
§ K-means based

§ Organize vectors into lists

§ Requires prepopulated data
§ Insert time bounded by # lists

• HNSW
§ Graph based

§ Organize vectors into
“neighborhoods”

§ Iterative insertions

§ Insertion time increases as data in
graph increases

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Which search method do I choose?

• Exact nearest neighbors: No index

• Fast indexing: IVFFlat

• Easy to manage: HNSW

• High performance/recall: HNSW

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector strategies and best
practices

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for pgvector

Storage strategies

HNSW strategies

IVFFlat strategies

Filtering

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector storage strategies

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Understanding TOAST in PostgreSQL

• TOAST (The Oversized-Attribute Storage Technique) is a mechanism
for storing data larger than 8KB

• By default, PostgreSQL “TOASTs” values over 2KB

• 510-dim 4-byte float vector

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL column storage types

• PLAIN: Data stored inline with table

• EXTENDED: Data stored/compressed in TOAST table when threshold
exceeded (pgvector default)

• EXTERNAL: Data stored in TOAST table when threshold exceeded

• MAIN: Data stored compressed inline with table

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=772135.51..772136.73 rows=10 width=12)

-> Gather Merge (cost=772135.51..1991670.17 rows=10000002 width=12)

Workers Planned: 6

-> Sort (cost=771135.42..775302.08 rows=1666667 width=12)

Sort Key: ((<-> embedding))

-> Parallel Seq Scan on vecs128 (cost=0.00..735119.34 rows=1666667
width=12)

128 dimensions

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=149970.15..149971.34 rows=10 width=12)

-> Gather Merge (cost=149970.15..1347330.44 rows=10000116 width=12)

Workers Planned: 4

-> Sort (cost=148970.09..155220.16 rows=2500029 width=12)

Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..94945.36 rows=2500029
width=12)

1,536 dimensions

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strategies for pgvector and TOAST

• Use PLAIN storage
§ ALTER TABLE … ALTER COLUMN ... SET STORAGE PLAIN

§ Requires table rewrite (VACUUM FULL) if data already exists

§ Limits vector sizes to 2,000 dimensions

• Use min_parallel_table_scan_size to induce more parallel
workers

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of TOAST on pgvector queries

Limit (cost=95704.33..95705.58 rows=10 width=12)

-> Gather Merge (cost=95704.33..1352239.13 rows=10000111 width=12)

Workers Planned: 11

-> Sort (cost=94704.11..96976.86 rows=909101 width=12)

Sort Key: (($1 <-> embedding))

-> Parallel Seq Scan on vecs1536 (cost=0.00..75058.77 rows=909101 width=12)

1,536 dimensions

SET min_parallel_table_scan_size TO 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW strategies

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW index building parameters

• m
§ Maximum number of bidirectional links between indexed vectors

§ Default: 16

• ef_construction
§ Number of vectors to maintain in “nearest neighbor” list

§ Default: 64

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an HNSW index

Layer 0

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

HNSW query parameters

• hnsw.ef_search
§ Number of vectors to maintain in “nearest neighbor” list

§ Must be greater than or equal to LIMIT

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an HNSW index

Layer 0

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for building HNSW indexes

• Default values (M=16,ef_construction=64) usually work

• (pgvector 0.5.1) Start with empty index and use concurrent writes to
accelerate builds
§ INSERT or COPY

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Impact of concurrent inserts on HNSW build time

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64

Ti
m

e
(s

)

Clients

HNSW index build (1,000,000 128-dim vectors)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choosing m and ef_construction

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0

50

100

150

200

250

32 64 128 256 512

Re
ca

ll

In
de

x
bu

ild
 (

m
in

)

ef_construction

1.1MM 1536-dim vectors, m=16, ef_search=20

Build Time (min) Recall

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choosing m and ef_construction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

100

200

300

400

500

600

700

800

16 24 36 48

Re
ca

ll

In
de

x
bu

ild
 (m

in
)

m

1MM 960-dim vectors

Build Time (min) Recall

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance strategies for HNSW queries

• Index building has biggest impact on performance/recall
§ More time spent building increases likelihood of finding best candidates in a

neighborhood

• Increasing hnsw.ef_search increases recall, decreases performance

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat strategies

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

IVFFlat index building parameters

• lists
§ Number of “buckets” for organizing vectors

§ Tradeoff between number of vectors in bucket and relevancy

CREATE INDEX ON products
USING ivfflat(embedding) WITH (lists=3);

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an IVFFlat index

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building an IVFFlat index: Assign lists

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index

SET ivfflat.probes TO 1

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Querying an IVFFlat index

SET ivfflat.probes TO 2

SELECT id FROM products ORDER BY $1 <-> embedding LIMIT 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance strategies for IVFFlat queries

• Increasing ivfflat.probes increases recall, decreases performance

• Lowering random_page_cost on a per-query basis can induce index
usage

• Set shared_buffers to a value that keeps data (table) in memory

• Increase work_mem on a per-query basis

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices for building IVFFlat indexes

• Choose value of lists to maximize recall but minimize effort of search
§ < 1MM vectors: # vectors / 1000

§ > 1MM vectors: √(# vectors)

• May be necessary to rebuild when adding/modifying vectors in index

• Use parallelism to accelerate build times

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How parallelism works with pgvector IVFFlat

Vectors in
table

List

List

List

Assign to listSequential scan

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How parallelism works with pgvector IVFFlat

Vectors in
table

List

List

List

Assign to listParallel scan

Assign to listParallel scan

Assign to listParallel scan

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Using parallelism to accelerate IVFFlat builds

0

20

40

60

80

100

120

140

Serial Parallel

Ti
m

e
(s

)

1MM 768-dim, lists=1000

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector filtering strategies

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is filtering?

SELECT id

FROM products

WHERE products.category_id = 7

ORDER BY :'q' <-> products.embedding

LIMIT 10;

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How filtering impacts ANN queries

• PostgreSQL may choose to not use the index

• Uses an index, but does not return enough results

• Filtering occurs after using the index

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Do I need an HNSW/IVFFlat index for a filter?

• Does the filter use a B-Tree (or other index) to reduce the data set?

• How many rows does the filter remove?

• Do I want exact results or approximate results?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering strategies

• Partial index

• Partition

CREATE INDEX ON docs

USING hnsw(embedding vector_l2_ops)

WHERE category_id = 7;

CREATE TABLE docs_cat7

PARTITION OF docs

FOR VALUES IN (7);

CREATE INDEX ON docs_cat7

USING hnsw(embedding vector_l2_ops);

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Filtering with existing embeddings
SELECT *

FROM (

(SELECT id,

embedding <=> (SELECT embedding FROM documents WHERE id = 1 LIMIT 1) AS dist

FROM documents

ORDER BY dist LIMIT 5)

UNION

(SELECT id,

embedding <=> (SELECT embedding FROM documents WHERE id = 2 LIMIT 1) AS dist

FROM documents

ORDER BY dist LIMIT 5)

) x

WHERE x.id NOT IN (1, 2)

ORDER BY x.dist LIMIT 5;

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Looking ahead

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

pgvector roadmap

• Parallel builds for HNSW (committed; targeted for pgvector 0.6.0)

• Enhanced index-based filtering/HQANN (in progress)

• More data types per dimension (float2, uint8) (in progress)

• Product quantization/scalar quantization

• Parallel query

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Conclusion

• Like JSON, a vector is just a data type.

• Primary design decision: query performance and recall

• Determine where to invest: storage, compute, indexing strategy

• Plan for today and tomorrow: pgvector is rapidly innovating

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile appThank you!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Jonathan Katz
jkatz@amazon.com

