
How to corrupt your database (and how to deal with data
corruption)

Laurenz Albe

www.cybertec-postgresql.com

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 2/53

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 3/53

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 4/53

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 5/53

Introduction

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 6/53

What I mean by “data corruption”

▶ data that cause an error of class XX

▶ XX000 (internal_error)
▶ XX001 (data_corrupted)
▶ XX002 (index_corrupted)

▶ data that cause PostgreSQL to crash

▶ inconsistent data: constraints are violated, rows are not indexed, . . .

▶ bad data values that were not caused by the user

DROP TABLE or DELETE may wreck your database, but won’t corrupt it.

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 7/53

Causes of data corruption

▶ bad hardware (faulty disk, bad memory, storage that lies)

▶ bad software (unreliable file system, PostgreSQL bugs)

▶ bad administrators (e.g., taking forbidden shortcuts)

PostgreSQL makes it as hard as possible to break the database, but it is not
perfect.

This talk is mostly about the last of these options (but the techniques for dealing
with corruption apply to all of them).

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 8/53

Data corruption caused by fsync = off

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 9/53

What is fsync?

▶ PostgreSQL uses “buffered I/O”
▶ writes don’t go to disk right away, but are buffered by the kernel

▶ data have to be forced out to disk before the end of a checkpoint, during a
COMMIT and at other times

▶ necessary to prevent data loss and inconsistency after crash (the Write Ahead
Log must be written before the data)

▶ PostgreSQL uses fsync or related system calls at the appropriate time (the
exact method can be configured with wal_sync_method)

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 10/53

What happens if fsync is off?

▶ fewer I/O requests, faster data modifications, better performance
(2.5 times more transactions per second in a simple pgbench run)

▶ as long as the operating system doesn’t crash, everything is fine

▶ if there is a crash, your data will probably be corrupted

Don’t disable fsync. Instead, set synchronous_commit = off. The performance gain
will be almost the same, and there will be no data corruption, only some lost
transactions.

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 11/53

Data corruption caused by a bad backup

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 12/53

Understanding file system backups

▶ a copy of all the files in the data directory

▶ safe if the database is shut down

▶ problem with online backups: the files are modified while being copied
⇒ backup is inconsistent

▶ after restore, recovery must be used to replay modifications from the start of
the backup

▶ the backup_label file contains information about the checkpoint from which
WAL has to be replayed

▶ backup_label is the only way to tell an online file system backup from a
crashed database server

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 13/53

How a bad backup can corrupt your database

▶ obviously, only if you restore the backup (that’s why you test restore)

▶ if backup_label is missing, PostgreSQL will recover from the checkpoint in the
control file, which is probably a later checkpoint
⇒ recovery will either fail or replay too little WAL

▶ as a consequence, the files will not be consistent:
▶ index and table may not be synchronized

▶ foreign keys may be violated

▶ committed transactions are undone (not yet in the commit log)

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 14/53

Reasons for a missing backup_label

▶ you don’t bother about correct backup and just backup all the files

▶ you deliberately remove backup_label from a backup

▶ you use the “non-exclusive low-level backup API” and don’t create
backup_label from the result of pg_backup_stop()

The “exclusive low-level backup API” (which created backup_label automatically)
has its own problems and was removed in PostgreSQL v15, so it has become easier
to create a corrupted backup with the third method.

If you want to avoid this problem, use pg_basebackup or some third-party backup
software (pgBackRest, Barman, pg_probackup, . . .).

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 15/53

Data corruption caused by pg_resetwal

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 16/53

What is pg_resetwal?

▶ pg_resetwal is a tool for experts to deal with data corruption

▶ it is a last-ditch effort to get a server to start and will typically cause data loss
or data corruption

▶ safe to use only after a clean shutdown and with --wal-segsize to change the
WAL segment size

▶ if you get this message:
The database server was not shut down cleanly.
Resetting the write-ahead log might cause data to be lost.
If you want to proceed anyway, use -f to force reset.

don’t do it unless you know what you are doing

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 17/53

How to corrupt your database with pg_resetwal

▶ pretty simple: just run it with -f on a cluster that was not shut down properly

▶ easier if you don’t read the documentation before using pg_resetwal

▶ people tend to do that if there are problems during startup

▶ I have also seen people do it if there are problems with WAL archiving or
replication – anything that has to do with WAL

▶ perhaps this also appeals to people who are used to databases where tools to
fix data corruption are routinely used (MySQL)

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 18/53

Data corruption from pg_upgrade --link

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 19/53

Starting two servers on the same data directory
▶ this would lead to data corruption

▶ PostgreSQL has safeguards against that
▶ postmaster.pid contains the running postmaster process ID; the server will

refuse to start if there is already a process with that ID running

▶ A small shared memory segment serves as an additional lock

▶ we can remove both postmaster.pid and the shared memory segment and
start a new server

▶ but we have to be quick, because the postmaster regularly checks
postmaster.pid and will die with the message

performing immediate shutdown because
data directory lock file is invalid

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 20/53

Data corruption with pg_upgrade --link

▶ data files are not copied, but shared via a “hard link”: the file (inode) exists only
once, but is listed in both data directories

▶ this makes upgrades very fast

▶ you must remove the old cluster after pg_upgrade

▶ if you start both the old and the new server (one after the other or at the same
time), you end up with data corruption

▶ PostgreSQL tries to prevent that by renaming the control file on the old cluster
to pg_control.old

▶ rename the file back to pg_control and start both servers!

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 21/53

Data corruption from messing with the data directory

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 22/53

Messing with pg_wal

▶ the most popular way is to remove files from pg_wal
(this happened more often back when it was called pg_xlog)

▶ people tend to do that when the disk is full and PostgreSQL crashed

▶ pg_wal is likely to fill up if
▶ the archiver has problems

▶ a standby server using a replication slot is down

▶ manually deleting the WAL segments in a crashed server is a sure way to break
PostgreSQL (it cannot recover from the crash)

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 23/53

Data corruption by messing with the catalogs

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 24/53

Messing with the catalogs

▶ this is always a good idea for corruption

▶ example: drop a column without ACCESS EXCLUSIVE lock

DELETE FROM pg_attribute
WHERE attrelid = 'pgbench_accounts'::regclass
AND attname = 'bid';

▶ example: change the data type without rewriting the table

UPDATE pg_attribute
SET atttypid = 'bigint'::regtype
WHERE attrelid = 'pgbench_accounts'::regclass

AND attname = 'bid';

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 25/53

Dealing with data corruption

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 26/53

Fundamental advice for data corruption

▶ don’t continue working with the corrupted database
(corruption can become worse, and any new work may be lost)

▶ if you have a good backup that you can restore, do that

▶ shut down PostgreSQL and take a cold file system backup
(dealing with corruption often destroys data)

▶ after fixing corruption, always dump/restore the data to a fresh cluster
(otherwise, invisible corruption may be left behind)

▶ investigate the cause and avoid it in the future

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 27/53

Backups against data corruption

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 28/53

Protect yourself with backups

▶ you are doing that anyway, right?

▶ a backup that isn’t monitored is no backup (e.g., pg_dump failing repeatedly
because of data corruption)

▶ pg_dump is better than a file system backup (if the dump restores, all data
corruption is automatically fixed)

▶ a file system level backup can be used for point-in-time-recovery to minimize
data loss (but you usually won’t notice if the backup contains corruption)

▶ best to do both backups: a regular file system backup and an occasional
pg_dump

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 29/53

Recovering with a backup

▶ restoring the last good backup means to cut your losses

▶ requires no expert knowledge

▶ if you cannot find other ways to deal with the data corruption, that is your only
way forward (or backward?)

▶ when considering other techniques, proceed as follows
▶ decide on a time and expense limit for efforts to repair corruption

▶ get an assessment by an expert (will involve guesswork)

▶ stop your efforts when the agreed limit is reached (don’t throw good money after
bad)

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 30/53

Index corruption

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 31/53

Index corruption: causes and symptoms

▶ index is inconsistent or data in table and index are out of sync

▶ often caused by things that should be immutable, but aren’t
(functions, collations after an operating system update, . . .)

▶ results are different, depending on whether an index scan or a sequential scan
are used (play with enable_indexscan and friends)

▶ use amcheck contrib extension to check indexes:
▶ bt_index_check checks internal consistency (with heapallindexed => TRUE, also

checks if all rows are indexed)

▶ bt_index_parent_check performs a thorough check, but requires a SHARE lock (no
concurrent data modifications)

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 32/53

How to deal with index corruption

▶ this is usually simple, since index data are redundant:

REINDEX INDEX CONCURRENTLY broken_index;

▶ if that fails, there is also data corruption (perhaps caused by the index
corruption)

▶ If a catalog index is broken:
▶ start the server with -P (ignore system indexes)

▶ rebuild the index as superuser

▶ restart the server without -P

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 33/53

Data corruption that causes no errors

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 34/53

Symptoms of corruption without errors

▶ bad values

▶ missing data, can be caused by
▶ rows that become invisible

▶ blocks that are all-zero (are treated as empty)

▶ files that have been truncated

▶ foreign keys that are violated (perhaps somebody disabled the constraint in the
past)

▶ duplicate data that violate uniqueness constraints (often caused by index
corruption)

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 35/53

Dealing with error-less data corruption

▶ this is fairly easy

▶ pg_dump the database, restore to a new cluster

▶ if there are errors during the restore (constraint cannot be created), delete/add
data manually until they are consistent

▶ we will try to reduce all of the more difficult cases to this one by making the
errors go away
▶ remember that you should not continue working with a database that had data

corruption

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 36/53

Data corruption that causes errors but no crash

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 37/53

Possible causes of errors

▶ checksum failure in data blocks
▶ only if cluster was created with checksums (additional cost, but you can detect

storage-induced corruption early on)
▶ block header is corrupted, for example:

invalid page in block 4711 of relation 183200

▶ table row is corrupted, for example:
found xmin 16804535 from before relfrozenxid 90126924
invalid memory alloc request size 18446744073709551613
could not access status of transaction 808464919

▶ TOAST data are corrupted, for example:
missing chunk number 0 for toast value 171568 in pg_toast_80762

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 38/53

Dealing with corrupted blocks

▶ you can set ignore_checksum_failure = on to ignore checksum failures (but
garbage in the block will still cause errors)

▶ you can set zero_damaged_pages = on to have PostgreSQL consider pages with
a corrupted header as empty
▶ won’t help if the header is ok, but rows are damaged

▶ those settings won’t change the data on disk, they are only useful to avoid
errors so that you can run pg_dump

▶ we’ll look at salvaging data from corrupted blocks later

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 39/53

Identifying TOAST corruption

▶ oversized column values are stored “out of line” in the TOAST table

▶ the actual table row contains a “TOAST pointer”

▶ the typical symptom is an error message with “toast” in it

▶ SELECT of the row works as long as you don’t select the column that points to
the broken TOAST record

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 40/53

Fixing TOAST corruption

▶ fixing is easy: DELETE the row or UPDATE the broken column to a different value
▶ identify the broken rows with something like

DO $$
DECLARE t tid;

x text;
BEGIN

FOR t IN SELECT ctid FROM badtable LOOP
BEGIN

SELECT badcol INTO x FROM badtable WHERE ctid = t;
EXCEPTION WHEN OTHERS THEN

RAISE NOTICE 'ctid = %', t;
END;

END LOOP;
END;$$;

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 41/53

Dealing with corrupted rows
▶ similar to TOAST, corruption, but we cannot find the primary key, so we have to

try all possible keys
DO $$
DECLARE i bigint; max_id bigint;
BEGIN

/* if that fails, guess a constant */
SELECT max(id) INTO max_id FROM badtable;
FOR i IN 1..max_id LOOP

BEGIN
/* make PostgreSQL read all data in the row */
PERFORM badtable::text INTO r FROM badtable WHERE id = i;

EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'id = %', i;

END;
END LOOP;

END;$$;

▶ if DELETE doesn’t work, SELECT everything except the bad rows into a new table

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 42/53

Using pg_surgery

▶ new extension in PostgreSQL v14

▶ useful for dealing with errors where the row cannot be accessed, like

found xmin 16804535 from before relfrozenxid 90126924

▶ function heap_force_kill to delete rows by ctid

▶ function heap_force_freeze to make rows visible by ctid

▶ another great tool to corrupt your database – handle with care

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 43/53

Data corruption that causes a crash

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 44/53

Why can data corruption cause crashes?

▶ for example, a bogus offset is added, which may lead to huge memory
allocations or bad pointers

▶ normally, such a crash is a software bug (lack of defensive programming)

▶ however, checking everything all the time slows down processing

▶ if you build PostgreSQL with --enable-cassert, many more checks are enabled

▶ assert-enabled builds will still cause crashes, but provide more meaningful log
messages

▶ on the other hand, data corruption may trigger assertions where a normal build
would just work ⇒ try both

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 45/53

Dealing with data corruption that causes crashes

▶ the idea is again to identify the bad rows and copy everything else

▶ because of the crash, PL/pgSQL code won’t do, and we have to write client code

▶ the program has to re-establish the connection after a crash and continue

▶ more development effort, but still fairly straightforward

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 46/53

Salvaging data from broken blocks or rows

▶ do that only if it is worth the effort

▶ try the pageinspect extension
▶ get_raw_page to read a block

▶ heap_page_item_attrs can extract data, but will usually fail in the face of
corruption

▶ pg_filedump
https://git.postgresql.org/gitweb/?p=pg_filedump.git

▶ also likely to be confused by data corruption

▶ the last resort is “od -t x1” or a hex editor and knowledge about PostgreSQL
internals

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 47/53

https://git.postgresql.org/gitweb/?p=pg_filedump.git

Missing or empty files

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 48/53

Causes for missing or empty files

▶ pilot error (administrator deleted files)
▶ this is frequent with WAL segments (see above)

▶ disks that lie (PostgreSQL synced the file to disk, but it is not there after a crash)

▶ file system check after a hardware problem

▶ misconfigured anti-virus software
▶ never let it run on the PostgreSQL data directory

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 49/53

Dealing with missing files

▶ tables, indexes etc. are easy: DROP the objects

▶ missing WAL segments ⇒ pg_resetwal

▶ read the documentation about guessing good values!

▶ if other files are missing, try faking them

▶ for example, to create a missing commit log file with 12 blocks will all
transactions committed (so data are visible):

for ((i=0; i<8192*12; i++)); do
echo -e -n '\x55' >> pg_xact/0130

done

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 50/53

Conclusion

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 51/53

Key messages from the talk

▶ stay on the safe side, don’t play with guns

▶ have good backups, ideally both physical and with pg_dump

▶ only fix corruption if you really have to (backup is better)

▶ take a cold file system backup before dealing with corruption

▶ use built-in tools: pg_resetwal, pg_surgery, pageinspect

▶ don’t work with the repaired database: dump and restore

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 52/53

Questions

How to corrupt your database (and how to deal with data corruption) Laurenz Albe www.cybertec-postgresql.com 53/53

	Introduction
	Data corruption caused by fsync = off
	Data corruption caused by a bad backup
	Data corruption caused by pg_resetwal
	Data corruption from pg_upgrade --link
	Data corruption from messing with the data directory
	Data corruption by messing with the catalogs
	Dealing with data corruption
	Backups against data corruption
	Index corruption
	Data corruption that causes no errors
	Data corruption that causes errors but no crash
	Data corruption that causes a crash
	Missing or empty files
	Conclusion
	Questions

