
Postgres vs. filesystems
Tomas Vondra @ EDB



Agenda

● Postgres relies on OS filesystems.
○ I/O scheduling, buffered I/O (page cache)

○ Why does it rely on OS, actually?

○ Good or bad? (Dis)advantages? Alternatives?

● evaluation of current (Linux) filesystems
○ ext4, xfs, btrfs, zfs

○ some basic benchmark numbers

○ problems and recommendations

● Future of Postgres I/O (maybe)
○ direct I/O, async I/O (next talk by Andres Freund)



● filesystem: ext4, xfs, zfs, btrfs

● LVM vs. btrfs/zfs

● snapshots?

● compression?

● ...

Test cases



Executive summary

● prefer a mature supported filesystem
○ supported by your distribution & support provider

○ new filesystems are great for research, not for production

● use recent kernels (very important - bugs, ...)
○ numbers will be from 6.3.9

○ bugs, performance improvements, hardware support



Executive summary

● ext4/xfs differences are "relatively small"
○ +10% is nice, but not a go / no-go matter (tuning?)

○ buying better hardware is likely "cheaper"

○ DB tuning easily makes up for this difference

● zfs / btrfs if you actually use advanced stuff
○ but maybe it's simpler to just use LVM ?



Reliance on OS





Postgres is a database ...

● storing / accessing data the whole point

● but the low-level stuff is left to the OS
○ OS implements filesystems, provides POSIX interface

● low-level stuff is responsibility of the OS
○ I/O scheduling, caching, sync/async, prefetching (*)

○ handling storage errors (*)



Postgres is a database ...

● is this a good idea?

● historical reasons
○ limited DEV capacity, outside project focus

● would it even be possible to do custom stuff?
○ a lot of supported platforms / different behavior

○ storage hardware changes a lot / quickly

● filesystems do innovate too
○ immediate benefit thanks to that (snapshots, ...)



disk disk disk

page cache

HW interface 
(drivers)

shared 
buffers

filesystem I/O scheduler

backend 
process

backend 
process

bg 
process Postgres

OS



disk disk disk

HW interface 
(drivers)

shared 
buffers

filesystem I/O scheduler

backend 
process

backend 
process

bg 
process Postgres

OS (direct I/O)



Problem #1: error handling

● POSIX is great!
○ but it doesn't guarantee the same behavior everywhere

● what happens after an I/O error during fsync?

● fsync gate (~2018)
○ problems with reporting / handling fsync failures

○ who gets the error with multiple file descriptors?

(everyone? old/new descriptors?)

○ fs-specific behavior - some throw away the dirty data / mark as clean

○ should be "fine" in new kernels (handled in a no-data-loss way)



Problem #2: lack of visibility

● the OS does great general-purpose scheduling

● the database knows more about the workload, could do better

● example A: it knows what can be done in the background
○ less sensitive I/O, acceptable to delay in favor of user stuff

○ flushing WAL / checkpoints, ...

● example B: prefetching
○ OS has to guess which block will be need next (depends on indexes, ...)

○ we already to explicit posix_fadvise() in a couple places to prefetch async



● old kernels have all kinds of issues

● bugs
○ fsyncgate (but probably other issues)

○ occasional (performance) regression

● inefficiency
○ general improvements everywhere

○ significant improvements in some filesystems (e.g. BTRFS)

Basic rule - use recent kernel



Benchmarks / stress tests
https://github.com/tvondra/fsbench-results 

https://github.com/tvondra/fsbench-results


When not under load, all
filesystems perform great.



When not under load, all
filesystems perform great.

;-)



Stress tests are not realistic

● all filesystems have some sort of maintenance / cleanup
○ intended to happen in the background (no disruption)

● stress test = designed to saturate the system
○ do as many transactions as possible

● typical production workload is not 100%
○ aim for ~75% and then consider upgrade

○ makes some of the charts look worse than reality (latency)

● also hardware and configuration-dependent
○ different RAID levels, ZIL/SLOG, ...



Bulk load



OLTP (pgbench, read-only)



OLTP (pgbench, read-write)



But throughput does not tell
the whole story ...



tps (xeon / NVMe)



latencies (xeon / NVMe)



tps (i5 / SATA SSD)



latencies (i5 / SATA SSD)



● dirty page cache (kernel)
○ evicted by OS, can cause spikes in latency

○ reduce vm.dirty_background_bytes / vm.dirty_expire_centisecs

○ and/or set backend_flush_after (disabled by default)

● full_page_writes (PG)
○ necessary on most file systems (zfs exception)

○ possible source of massive write amplification

○ maybe increase max_wal_size (but has drawbacks too)

● zfs prefetch (read-ahead)?
○ pg_dump durations ~2x higher than other filesystems

More important ...



vm.dirty_background_bytes = 32MB vs. 1GB



what about snapshots?



LVM LVM native native



LVM LVM native native



● how much more we could get from NVMe?
○ can we saturate NVMe for reads/writes?

○ not really, we're quite CPU heavy (cycles per I/O request)

● What Modern NVMe Storage Can Do, And How To Exploit It: 
High-Performance I/O for High-Performance Storage Engines
Gabriel Haas, Viktor Leis, Technische Universität München
https://www.vldb.org/pvldb/vol16/p2090-haas.pdf 

Questions

https://www.vldb.org/pvldb/vol16/p2090-haas.pdf


● different hardware
○ somewhat different patterns on old vs. new hardware

● what about many files?
○ large relations: 1TB relation is ~1000 files

○ 1 table -> multiple files (forks: data, vm, fsm), so many relations ...

○ there's caching, but ultimately it's up to the filesystem

● different workloads
○ OLTP is heavy on random I/O, but fairly simple

○ OLAP or mixed (OLTP + OLAP) workload

Future tests



Q & A


