
PERFORMANCE TIPS
YOU HAVE NEVER SEEN BEFORE

Version 2.0

www.cybertec-postgresql.com

CUSTOMER
BUSINESS
SECTORS
■ ICT

■ Universities

■ Government

■ Automotive

■ Industrial

■ Trade

■ Financial Services

■ etc.

POSTGRESQL PERFORMANCE

Sharing some less known stuff

GOAL OF THIS TALK

● Share some dirty, less well known trickery

● Hopefully help people to speed up apps

● Performance “beyond postgresql.conf”

● There is more than …

○ Adding memory

○ Adding CPUs

POSTGRESQL

CREATING CONNECTIONS

BETTER CONNECTIONS?
● Can we do something when creating connections?

● Maybe speed up stuff to come?

● Every thought about …

test=# SHOW session_preload_libraries;

 session_preload_libraries

(1 row)

WHY CARE ABOUT LIBRARIES?

● Can we do something when creating connections?

● Maybe speed up stuff to come?

● Every thought about …

CREATE OR REPLACE FUNCTION r_max (integer, integer)
RETURNS integer AS

$$
 if (arg1 > arg2)
 return(arg1)
 else
 return(arg2)
$$ LANGUAGE 'plr' STRICT;

WHY CARE ABOUT LIBRARIES?

● Mind the first call …
test=# \timing
Timing is on.
test=# SELECT r_max(1, 2);
 r_max
═══════
 2
(1 row)

Time: 229.629 ms
test=# SELECT r_max(1, 2);
 r_max
═══════
 2
(1 row)

Time: 0.705 ms

PRELOADING LIBRARIES

● Load libraries when …

○ Creating the connection

○ Starting the server (shared_preload_libraries)

● More stable runtimes

● Very useful when loading large libraries

● Predictable runtimes matter

● HINT:

○ Initializing the library is still not “free”

○ But preloading helps

REAL LIFE: PostGIS
> psql -U postgres
…

test=# \timing
Timing is on.
test=# SELECT * FROM hans.points WHERE id = 1;
 id │ p
════╪══
 1 │ 0101000020E610000097515B9536C33140A252824D6FDC1440
(1 row)

Time: 10.004 ms
test=# SELECT * FROM hans.points WHERE id = 1;
 id │ p
════╪══
 1 │ 0101000020E610000097515B9536C33140A252824D6FDC1440
(1 row)

Time: 0.664 ms

REAL LIFE: PostGIS
> PGOPTIONS='-c session_preload_libraries=postgis-3' psql -U postgres
…

test=# \timing
Timing is on.
test=# SELECT * FROM hans.points WHERE id = 1;
 id │ p
════╪══
 1 │ 0101000020E610000097515B9536C33140A252824D6FDC1440
(1 row)

Time: 2.809 ms
test=# SELECT * FROM hans.points WHERE id = 1;
 id │ p
════╪══
 1 │ 0101000020E610000097515B9536C33140A252824D6FDC1440
(1 row)

Time: 0.674 ms

POSTGRESQL

STORING DATA

RUNNING A TEST

● Use pgbench to init a database

● Run a couple of transactions
pgbench -c 4 -t 25000 -j 4 postgres

● Measure the difference
wal_level = logical vs minimal
max_wal_size = 64 MB vs 100 GB

RUNNING A TEST
ON A FRESH INSTANCE
wal_level = logical
max_wal_size = 64MB

postgres=# SELECT pg_size_pretty(pg_current_wal_lsn()
- '0/00000000'::pg_lsn) AS diff;
 diff

 135 MB
(1 row)

Very bad settings

How much WAL was created?

RUNNING A TEST
ON A FRESH INSTANCE
wal_level = minimal
max_wal_size = 100GB

postgres=# SELECT pg_size_pretty(pg_current_wal_lsn()
- '0/00000000'::pg_lsn) AS diff;
 diff

 82 MB
(1 row)

Very good settings

How much WAL was created?

WHY IS THAT?

● “minimal” ensures that the WAL is smaller in general

● Longer checkpoint distances (max_wal_size) lead to smaller WAL

○ Not so many full page write

● Especially useful during bulk loading

○ Consider creating replicas later
Most relevant !

POSTGRESQL

INDEXING

INDEXING: SUPER IMPORTANT …

Indexes are THE most important performance features

If you don’t index properly …

Your database will be slow

Your apps won’t work

More hardware won’t fix anything

CREATING SAMPLE DATA
JUST NUMBERS …
test=# CREATE TABLE t_static (id int);
CREATE TABLE

test=# INSERT INTO t_static
SELECT *
FROM generate_series(1, 25000000);

INSERT 0 25000000

A simple table

Let us add 25 million rows

CREATING INDEXES
USING FILLFACTOR
test=# CREATE INDEX idx_90 ON t_static (id);
CREATE INDEX
test=# CREATE INDEX idx_100 ON t_static (id) WITH (FILLFACTOR=100);
CREATE INDEX

test=# \di+
 List of relations
 Schema | Name | Type | Owner | Table | Persistence | Access method | Size
--------+---------+-------+-------+----------+-------------+---------------+--------
 public | idx_100 | index | hs | t_static | permanent | btree | 483 MB
 public | idx_90 | index | hs | t_static | permanent | btree | 536 MB
(2 rows)

Default value = 90%

INDEXING: FILLFACTOR = 100

● ONLY do it on STATIC data

● Never if you expect changes

○ Updates will cause immediate index node splits

○ Immediate node splits are not desired

● Large, static data is quite frequent

● Nice optimization for static cases

Word of caution

POSTGRESQL

ENFORCING JOIN ORDER

CREATING TABLES
plan=# SELECT 'CREATE TABLE x' || id || ' (id int)'

 FROM generate_series(1, 5) AS id;
 ?column?

 CREATE TABLE x1 (id int)
 CREATE TABLE x2 (id int)
 CREATE TABLE x3 (id int)
 CREATE TABLE x4 (id int)
 CREATE TABLE x5 (id int)
(5 rows)

plan=# \gexec
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE

Generate some SQL

Use it directly

PLAN TIME DOES MATTER
“Playing with fire”

● Optimizer decides on join order

● Usually makes good decisions

● Planning is not cost free (consider prepared plans)

● Word of caution:

○ Know what you are doing

○ This can blow up in your face

INSPECTING PLAN TIME
Optimization does take time

plan=# explain (timing, analyze) SELECT *

FROM x1 JOIN x2 ON (x1.id = x2.id)

JOIN x3 ON (x2.id = x3.id)

JOIN x4 ON (x3.id = x4.id)

JOIN x5 ON (x4.id = x5.id);

…

Planning Time: 0.297 ms

Execution Time: 0.049 ms

INSPECTING PLAN TIME
Optimization does take time
plan=# SET join_collapse_limit TO 1;

SET

plan=# explain (timing, analyze) SELECT *

FROM x1 JOIN x2 ON (x1.id = x2.id)

JOIN x3 ON (x2.id = x3.id)

JOIN x4 ON (x3.id = x4.id)

JOIN x5 ON (x4.id = x5.id);

…

Planning Time: 0.069 ms

Execution Time: 0.046 ms

WHAT HAPPENED?
We fixed join order …

● join_collapse_limit defines how many

○ explicit joins

○ are planned implicitly

● In short:

○ We fixed the join order

Caution !
Know what you are doing !

POSTGRESQL

EXECUTING MORE EFFICIENTLY

CHANGING EXECUTION ORDER
test=# CREATE TABLE t_test AS

SELECT *
FROM generate_series(1, 10000000) AS id;

SELECT 10000000

CREATE FUNCTION returns_many(int)
RETURNS int AS
$$

BEGIN
IF $1 % 2 = 0
THEN

RETURN $1;
END IF;
RETURN 0;

END;
$$ LANGUAGE 'plpgsql';

Creating sample data

CREATE FUNCTION returns_few(int)
RETURNS int AS
$$

BEGIN
IF $1 % 1000 = 35
THEN

RETURN $1;
END IF;
RETURN 0;

END;
$$ LANGUAGE 'plpgsql';

CHANGING EXECUTION ORDER
explain analyze SELECT *

FROM t_test
WHERE returns_many(id) = id

AND returns_few(id) = id;

 QUERY PLAN
--
 Seq Scan on t_test (cost=0.00..5194236.16 rows=250 width=4)

 (actual time=2625.793..2625.794 rows=0 loops=1)
 Filter: ((returns_many(id) = id) AND (returns_few(id) = id))
 Rows Removed by Filter: 10000000
 Planning Time: 0.218 ms
 Execution Time: 2625.846 ms
(5 rows)

Creating sample data

CHANGING EXECUTION ORDER
test=# SELECT * FROM pg_stat_xact_user_functions;

 funcid | schemaname | funcname | calls | total_time | self_time
--------+------------+--------------+----------+-------------+-------------
 25581 | public | returns_many | 10000000 | 1596.306829 | 1596.306829
 25582 | public | returns_few | 5000000 | 798.209276 | 798.209276
(2 rows)

Mind the number of
function calls

CHANGING EXECUTION ORDER
test=# ALTER FUNCTION returns_many(int)

COST 10000;

 QUERY PLAN
--
 Seq Scan on t_test (cost=0.00..252693666.91 rows=250 width=4)

 (actual time=2154.733..2154.738 rows=0 loops=1)
 Filter: ((returns_few(id) = id) AND (returns_many(id) = id))
 Rows Removed by Filter: 10000000
 Planning Time: 0.045 ms
 Execution Time: 2154.751 ms
(5 rows)

Making things more expensive

What we did …
Behind the scenes …
● We did NOT set costs

● We set a multiplier for cpu_operator_cost

○ Internal functions are cpu_operator_cost * 1 = 0.0025 (default)

○ Procedural code is normally cpu_operator_cost * 100

○ We made our function more expensive

○ PostgreSQL therefore changed execution order

POSTGRESQL

SUMMARY

https://www.cybertec-postgresql.com/
en/jobs-and-opportunities/

https://www.cybertec-postgresql.com/en/jobs-and-opportunities/
https://www.cybertec-postgresql.com/en/jobs-and-opportunities/
https://www.cybertec-postgresql.com/en/jobs-and-opportunities/

CEO
Hans–Jürgen SCHÖNIG
MAIL
hs@cybertec.at

PHONE
+43 2622 930 22 - 666

WEB
www.cybertec-postgresql.com

