
Counting things at the speed of light with roaring bitmaps

Ants Aasma

pgconf.eu 2023

Hello

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 2/62

About me

▶ Ants Aasma
▶ Senior Database Consultant
▶ 12 years of helping people make PostgreSQL run fast

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 3/62

What is faceting

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 4/62

Counting on steroids

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 5/62

The trouble with faceting
▶ Core task is simple:

SELECT attribute, COUNT(*) FROM sometable WHERE .. GROUP BY attribute

▶ Attribute can be anything:
▶ Category
▶ Status
▶ Date
▶ Tags
▶ . . .

▶ There are too many filter combinations to precompute the counts.

▶ Some filters are not very selective, need to tally up a large fraction of all objects.

▶ Is used as a navigational aid, so needs to be interactive fast.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 6/62

Story time

▶ We need to provide faceting on upwards of 100M documents.
▶ Want to have accurate counts, at worst slightly stale ones.

▶ No data leaking!
▶ Response time: < 2s
▶ Want to do this in PostgreSQL, because it is cool.

(also because maintaining an external ElasticSearch cluster is a pain)

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 7/62

Example schema
faceting=# \d documents

Table "public.documents"
Column | Type | Collation | Nullable | Default

-------------+--------------------------+-----------+----------+---------
id | integer | | not null |
created | timestamp with time zone | | not null |
finished | timestamp with time zone | | |
category_id | bigint | | not null |
tags | text[] | | |
type | mimetype | | |
size | bigint | | |
title | text | | |

Indexes:
"documents_pkey" PRIMARY KEY, btree (id)

faceting=# SELECT COUNT(*), COUNT(*) FILTER (WHERE category_id = 24) in_cat24 FROM documents;
count | in_cat24

-----------+----------
100000000 | 60819016

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 8/62

Naive implementation

(SELECT 'created' AS facet_name, date_trunc('month', created)::text AS facet_value,
COUNT(*) AS cardinality

FROM documents WHERE category_id = 24 GROUP BY 1, 2)
UNION ALL

(SELECT 'finished', date_trunc('month', finished)::text, COUNT(*)
FROM documents WHERE category_id = 24 GROUP BY 1, 2)

UNION ALL
(SELECT 'type', type::text, COUNT(*)
FROM documents WHERE category_id = 24 GROUP BY 1, 2)

UNION ALL
(SELECT 'size', width_bucket(size, array[0,1000,5000,10000,50000,100000,500000])::text,

COUNT(*)
FROM documents WHERE category_id = 24 GROUP BY 1, 2);

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 9/62

Naive result

▶ 32s

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 10/62

https://explain.dalibo.com/plan/8e4f97b7b787bbdh

Getting rid of multiple scans

SELECT facet_name, facet_value, COUNT(*) cardinality
FROM documents d, LATERAL (VALUES

('created', date_trunc('month', created)::text),
('finished', date_trunc('month', finished)::text),
('type', type::text),
('size', width_bucket(size, array[0,1000,5000,10000,50000,100000,500000])::text)

) t(facet_name, facet_value)
WHERE category_id = 24 GROUP BY 1, 2;

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 11/62

Slightly better. . .
▶ 23.4s

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 12/62

https://explain.dalibo.com/plan/f1g2dc5h66bd4gfc

More parallelism?

▶ This was with 8 parallel workers.

▶ With 24 (number of logical threads) I got 16.8s.
ALTER TABLE documents SET (parallel_workers = 23)

▶ Only looking at 4 facets here.

▶ This does not scale well. . .

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 13/62

Back of the envelope calculations

▶ For each row:
▶ For each facet:

▶ Find the counter for (facet, value) and add 1 to it.
▶ For 100M rows and 10 facets need to do the inner loop 1 billion times.
▶ Even averaging a single memory access per row gets us 100ns*1B = 100s of

CPU time.
▶ Each memory access is 30 lightmeters

▶ Randomized access is sloooooow. . .

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 14/62

Back of the envelope calculations

▶ For each row:
▶ For each facet:

▶ Find the counter for (facet, value) and add 1 to it.
▶ For 100M rows and 10 facets need to do the inner loop 1 billion times.
▶ Even averaging a single memory access per row gets us 100ns*1B = 100s of

CPU time.
▶ Each memory access is 30 lightmeters

▶ Randomized access is sloooooow. . .

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 14/62

What CPUs do fast
▶ CPUs are really good at bit arithmetic and vectorized execution.

▶ Useful instructions:
▶ VANDPD zmm, zmm, m512

▶ Read 512 bits from memory and do a logical AND with a value in register
▶ Intel Xeon 4th gen and AMD EPYC 4th gen can do 2 per cycle

▶ VPOPCNTQ zmm, zmm
▶ Count number of set bits in 8 64bit words.
▶ 1 per cycle

▶ VPADDQ zmm, zmm, zmm
▶ Add together elements of two 8x64bit vectors.
▶ 2 per cycle.

▶ Need 1 - 1.5 cycles per iteration.
▶ ~3 GHz / 1.5 cycles * 512 bits ~= 1’000’000’000’000 bit intersections/s/core

▶ That’s 1T with a T
▶ 0.3 lightmm per bit

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 15/62

What CPUs do fast
▶ CPUs are really good at bit arithmetic and vectorized execution.

▶ Useful instructions:
▶ VANDPD zmm, zmm, m512

▶ Read 512 bits from memory and do a logical AND with a value in register
▶ Intel Xeon 4th gen and AMD EPYC 4th gen can do 2 per cycle

▶ VPOPCNTQ zmm, zmm
▶ Count number of set bits in 8 64bit words.
▶ 1 per cycle

▶ VPADDQ zmm, zmm, zmm
▶ Add together elements of two 8x64bit vectors.
▶ 2 per cycle.

▶ Need 1 - 1.5 cycles per iteration.
▶ ~3 GHz / 1.5 cycles * 512 bits ~= 1’000’000’000’000 bit intersections/s/core

▶ That’s 1T with a T
▶ 0.3 lightmm per bit

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 15/62

What CPUs do fast
▶ CPUs are really good at bit arithmetic and vectorized execution.

▶ Useful instructions:
▶ VANDPD zmm, zmm, m512

▶ Read 512 bits from memory and do a logical AND with a value in register
▶ Intel Xeon 4th gen and AMD EPYC 4th gen can do 2 per cycle

▶ VPOPCNTQ zmm, zmm
▶ Count number of set bits in 8 64bit words.
▶ 1 per cycle

▶ VPADDQ zmm, zmm, zmm
▶ Add together elements of two 8x64bit vectors.
▶ 2 per cycle.

▶ Need 1 - 1.5 cycles per iteration.
▶ ~3 GHz / 1.5 cycles * 512 bits ~= 1’000’000’000’000 bit intersections/s/core

▶ That’s 1T with a T
▶ 0.3 lightmm per bit

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 15/62

Converting our problem to bitmaps

▶ Lets assume we have an integer id field

▶ Lets precalculate a bitmap for each attribute-value combination

▶ For every document where attribute=value set bit at position id to 1

▶ Store bitmaps in a (attr, value, bitmap) table.

▶ Not actually a new idea - usually called an inverted index.
▶ (like GIN)

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 16/62

Converting our problem to bitmaps

▶ Lets assume we have an integer id field

▶ Lets precalculate a bitmap for each attribute-value combination

▶ For every document where attribute=value set bit at position id to 1

▶ Store bitmaps in a (attr, value, bitmap) table.

▶ Not actually a new idea - usually called an inverted index.
▶ (like GIN)

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 16/62

Calculating facet counts

1. Build bitmap corresponding to where clause.
▶ If can be expressed in terms of facets can combine existing bitmaps.

2. For each facet and value, calculate:

POPCNT(AND(lookup_bitmap, facet_value_bitmap))

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 17/62

Some numbers

▶ Assuming 10 facets, avg 1’000 values each, 10k * 100M = 1T bits
▶ In theory can calculate it in 1 CPU second

▶ 1T bits = 125GB (1.25KB per document)
▶ Memory usage
▶ Memory bandwidth (typical ~10GB/s per physical core)

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 18/62

Some numbers

▶ Assuming 10 facets, avg 1’000 values each, 10k * 100M = 1T bits
▶ In theory can calculate it in 1 CPU second

▶ 1T bits = 125GB (1.25KB per document)
▶ Memory usage
▶ Memory bandwidth (typical ~10GB/s per physical core)

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 18/62

Can we do better

▶ 99.9% of those 1T bits are 0
▶ Some things are very popular, some things less so.
▶ Can we use some hybrid storage approach?

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 19/62

Roaring Bitmaps

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 20/62

What are Roaring Bitmaps

▶ Fast implementation of compressed integer sets.
▶ Daniel Lemire, et al. 2017

▶ Adaptive datastructure.
▶ SIMD accelerated.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 21/62

How do Roaring Bitmaps work

▶ 2 level tree.
▶ 32bit integers are split into low and high words.
▶ First level is sorted list of high words that have a container.

▶ For each one store the high word, pointer and container type.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 22/62

Roaring bitmap container types

▶ Array
▶ Sorted list of 16bit low words
▶ Up to 4096 entries.

▶ Bitmap
▶ 216 entry bitmap (8KB)

▶ (optional) Run length encoded
▶ 4 byte pairs of (starting_value, run_length)

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 23/62

Roaring bitmap operations

▶ Pattern: pair up containers of two bitmaps, run operation on pair

▶ Example: a intersect b
▶ null & any ⇒ null
▶ array & array ⇒ SIMD accelerated intersection, with special cases for skew
▶ bitmap & bitmap ⇒ SIMD intersection, convert to array if small
▶ array & bitmap ⇒ branchless loop to filter array with lookups to bitmap
▶ array & run ⇒ merge join
▶ . . .

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 24/62

Roaring bitmap operations

▶ Pattern: pair up containers of two bitmaps, run operation on pair

▶ Example: a intersect b
▶ null & any ⇒ null
▶ array & array ⇒ SIMD accelerated intersection, with special cases for skew
▶ bitmap & bitmap ⇒ SIMD intersection, convert to array if small
▶ array & bitmap ⇒ branchless loop to filter array with lookups to bitmap
▶ array & run ⇒ merge join
▶ . . .

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 24/62

Other users

Used all over the place:

▶ ClickHouse
▶ Apache Lucene (Elasticsearch, Solr)
▶ Apache Hive
▶ Pinot

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 25/62

pg_roaringbitmap

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 26/62

What is pg_roaringbitmap

▶ PostgreSQL extension that wraps C Roaring Bitmap library.
▶ Introduces a roaringbitmap datatype and associated operations.
▶ Available from github.com/ChenHuajun/pg_roaringbitmap

▶ Not available on AWS RDS, Google Cloud SQL or Azure (yet)

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 27/62

https://github.com/ChenHuajun/pg_roaringbitmap

Using pg_roaringbitmap

Regular PostgreSQL datatype:
CREATE EXTENSION roaringbitmap;

CREATE TABLE document_facets (
facet_id int4,
facet_value text,
postinglist roaringbitmap NOT NULL,
PRIMARY KEY (facet_id, facet_value)

);

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 28/62

Building bitmaps

▶ Convert an array to a roaring bitmap
INSERT INTO document_facets
VALUES (1, 'helloworld', rb_build(array[1,2,3]));

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 29/62

Building bitmaps

▶ Aggregate a set of integers to a roaring bitmap
SELECT rb_build_agg(i) FROM generate_series(1, 100) i;

INSERT INTO document_facets
SELECT 1, category_id::text, rb_build_agg(id)

FROM documents GROUP BY 1, 2;

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 30/62

Useful operations

▶ Combine two bitmaps:
▶ roaringbitmap & roaringbitmap ⇒ roaringbitmap - AND
▶ roaringbitmap | roaringbitmap ⇒ roaringbitmap - OR
▶ roaringbitmap # roaringbitmap ⇒ roaringbitmap - XOR
▶ roaringbitmap - roaringbitmap ⇒ roaringbitmap - AND NOT

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 31/62

Element wise operations
▶ Add element:

roaringbitmap | integer ⇒ roaringbitmap

▶ Remove element:

roaringbitmap - integer ⇒ roaringbitmap

▶ Check if member

roaringbitmap @> integer ⇒ boolean

▶ Get members

rb_iterate(roaringbitmap) ⇒ SETOF integer

rb_to_array(roaringbitmap) ⇒ integer[]

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 32/62

Counting things

▶ Number of elements in set:

rb_cardinality(roaringbitmap) ⇒ bigint

+ combined op & count functions:

rb_and_cardinality(roaringbitmap, roaringbitmap) ⇒ bigint
rb_or_cardinality(roaringbitmap, roaringbitmap) ⇒ bigint
rb_xor_cardinality(roaringbitmap, roaringbitmap) ⇒ bigint
rb_andnot_cardinality(roaringbitmap, roaringbitmap) ⇒ bigint

▶ Empty:

rb_is_empty(roaringbitmap) ⇒ boolean

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 33/62

Aggregating things

▶ Aggregate functions to aggregate across rows:

rb_or_agg(roaringbitmap) ⇒ roaringbitmap
rb_and_agg(roaringbitmap) ⇒ roaringbitmap
rb_xor_agg(roaringbitmap) ⇒ roaringbitmap

▶ When we only care about the count

rb_or_cardinality_agg(roaringbitmap) ⇒ roaringbitmap
rb_and_cardinality_agg(roaringbitmap) ⇒ roaringbitmap
rb_xor_cardinality_agg(roaringbitmap) ⇒ roaringbitmap

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 34/62

Limitations

▶ Currently only 32 bit integers are supported

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 35/62

Building the faceting

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 36/62

Storing facets as roaring bitmaps

CREATE TABLE documents_facets AS
SELECT facet_name COLLATE "C", facet_value COLLATE "C", rb_build_agg(id) postinglist
FROM documents d, LATERAL (VALUES

('category_id', category_id::text),
('created', date_trunc('month', created)::text),
('finished', date_trunc('month', finished)::text),
('type', type::text),
('size', width_bucket(size, array[0,1000,5000,10000,50000,100000,500000])::text)

) t(facet_name, facet_value)
GROUP BY 1, 2;
ALTER TABLE documents_facets ADD PRIMARY KEY (facet_name, facet_value);

Execution time: 34s

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 37/62

https://explain.dalibo.com/plan/3e9078f416294hh5

Resulting table
faceting=# SELECT pg_size_pretty(pg_total_relation_size('documents_facets'));
pg_size_pretty

214 MB

(1 row)

faceting=# SELECT facet_name, COUNT(*), MIN(LENGTH(postinglist::bytea)),
faceting-# MAX(LENGTH(postinglist::bytea)), SUM(LENGTH(postinglist::bytea))
faceting-# FROM documents_facets GROUP BY 1;
facet_name | count | min | max | sum

-------------+-------+---------+----------+----------
type | 8 | 3980664 | 12513208 | 84585018
size | 7 | 244942 | 12513208 | 54145664
created | 168 | 65 | 300 | 26735
category_id | 100 | 31272 | 12513208 | 73180638
finished | 168 | 9211 | 33108 | 3739175

(5 rows)

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 38/62

Getting our facets

WITH lookup AS (
SELECT postinglist FROM documents_facets
WHERE facet_name = 'category_id' AND facet_value = '24'

)
SELECT facet_name, facet_value,

rb_and_cardinality(facet.postinglist, lookup.postinglist)
FROM lookup, documents_facets facet
WHERE facet.facet_name != 'category_id';

Execution Time: 1057.078 ms

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 39/62

Explain plan

Nested Loop (cost=0.27..26.32 rows=351 width=35) (actual time=3.213..1056.931 rows=351 loops=1)
Buffers: shared hit=575611
-> Index Scan using documents_facets_pkey on documents_facets (cost=0.27..8.29 rows=1 width=72)

(actual time=0.009..0.011 rows=1 loops=1)
Index Cond: ((facet_name = 'category_id'::text) AND (facet_value = '24'::text))
Buffers: shared hit=3

-> Seq Scan on documents_facets facet (cost=0.00..13.64 rows=351 width=99) (actual time=0.012..0.630 rows=351 loops=1)
Filter: (facet_name <> 'category_id'::text)
Rows Removed by Filter: 100
Buffers: shared hit=8

Planning:
Buffers: shared hit=2

Planning Time: 0.102 ms
Execution Time: 1057.078 ms

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 40/62

TOAST!!!!!!

▶ Large values are stored out of line in a secondary table.
▶ (chunk_id oid, chunk_seq int, chunk_data bytea)

▶ Every time a toasted value is accessed this table is queried.
▶ PostgreSQL is not very smart about when to detoast.
▶ PostgreSQL offers very little control over when to detoast.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 41/62

Some tricks to force the planner

WITH lookup AS (
SELECT postinglist << 0 postinglist FROM documents_facets
WHERE facet_name = 'category_id' AND facet_value = '24'
OFFSET 0

)
SELECT facet_name, facet_value,

rb_and_cardinality(facet.postinglist, lookup.postinglist)
FROM lookup, documents_facets facet
WHERE facet.facet_name != 'category_id';

Execution Time: 80.100 ms

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 42/62

https://explain.dalibo.com/plan/538f55918f2fe998

Other TOAST tricks

If possible store inline.
ALTER TABLE documents_facets SET (toast_tuple_target = 8160);

Use faster compression.
ALTER TABLE documents_facets ALTER postinglist SET COMPRESSION "lz4";
-- or even better
SET default_toast_compression = 'lz4';

Or no compression at all.
ALTER TABLE documents_facets ALTER postinglist SET STORAGE EXTERNAL;

Surprisingly no major impact.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 43/62

Dealing with write amplification

▶ Keeping facets up to date on every modification creates insane amounts of
write amplification

▶ For each insert need to update 12.5MB * N_facets of data.
▶ Updates are up to double that.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 44/62

Chunking
▶ Lets partition the id range into smaller chunks.

▶ Chunks need to be big enough to hide overheads, but small enough to not be
too costly to update.

▶ Example chunking method: id >> 20 AS chunk_id

▶ 1M rows per chunk means up to 128KB bitmaps

▶ Query needs to join facets using chunk_id and tally up results at the end:
SELECT facet_name, facet_value,

sum(rb_and_cardinality(facet.postinglist, lookup.postinglist))
FROM lookup JOIN documents_facets facet USING (chunk_id)
GROUP BY 1,2;

▶ ~10% performance improvement.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 45/62

Chunking effect

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 46/62

Delta tables
▶ Further reduce overhead by storing updates in a delta table.

CREATE TABLE documents_facets_deltas (
facet_id int4 not null,
facet_value text collate "C" null,
posting integer not null,
delta int2,
primary key (facet_id, facet_value, posting)

);

▶ On insert run:
INSERT INTO documents_facets_deltas VALUES (..., ..., id, +1)
ON CONFLICT (facet_id, facet_value, posting) DO UPDATE

SET delta = EXCLUDED.delta + documents_facets_deltas.delta;

▶ Delete is same with -1

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 47/62

Delta tables
▶ Triggers can automatically maintain delta tables.

▶ Periodically aggregate together deltas and merge them in:
WITH tbd AS (DELETE FROM documents_facets_deltas RETURNING *),
deltas AS (SELECT facet_name, facet_value,

rb_build_agg(posting) FILTER (WHERE delta > 0) AS added,
rb_build_agg(posting) FILTER (WHERE delta < 0) AS removed

FROM tbd GROUP BY 1, 2)
MERGE INTO documents_facets df
USING deltas d
ON df.facet_name = d.facet_name AND df.facet_value = d.facet_value
WHEN MATCHED THEN

UPDATE SET postinglist = postinglist | added - removed
WHEN NOT MATCHED THEN

INSERT VALUES (d.facet_name, d.facet_value, added);

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 48/62

Multi-valued facets

▶ Sometimes a row can have more than one value for an attribute.
▶ Tags
▶ Keywords
▶ Joined attributes

▶ Easy to handle - just generate (facet_name, facet_value) pair for each value.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 49/62

Packaging it all up
▶ This is all available as ready to use code. Work sponsored by XeniT.

▶ github.com/cybertec-postgresql/pgfaceting

▶ Usage:
CREATE EXTENSION pgfaceting;
SELECT faceting.add_faceting_to_table(

'documents', key => 'id', keep_deltas => true,
facets => array[

faceting.datetrunc_facet('created', 'month'),
faceting.datetrunc_facet('finished', 'month'),
faceting.plain_facet('category_id'),
faceting.plain_facet('type'),
faceting.bucket_facet('size', buckets =>
array[0,1000,5000,10000,50000,100000,500000])

]
);

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 50/62

https://github.com/cybertec-postgresql/pgfaceting

Generating search queries

SELECT * FROM faceting.count_results('documents',
filters => array[row('category_id', '24'),

row('type', 'image/jpeg')
]::faceting.facet_filter[]);

Add this as a cron job to merge in deltas periodically.
CALL faceting.run_maintenance();

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 51/62

Future work

▶ Maintenance tools (add facet/remove facet)
▶ Better interface for generating search queries
▶ Automatically join in deltas when searching
▶ Option to only keep top facets

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 52/62

What doesn’t work well

▶ Sparse values will be worse than just storing an integer array.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 53/62

Other uses for Roaring Bitmaps

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 54/62

Graphs

▶ Fast graph algorithms
▶ Number nodes with integer id’s
▶ Store for each node incoming and/or outgoing edges as roaring bitmap

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 55/62

Finding shortest path
CREATE OR REPLACE FUNCTION shortest_path(src int, dest int) RETURNS int AS $$
DECLARE

o_depth int := 0; o_new roaringbitmap := rb_build(array[src]); o_tc roaringbitmap := o_new;
i_depth int := 0; i_new roaringbitmap := rb_build(array[dest]); i_tc roaringbitmap := i_new;

BEGIN
WHILE NOT i_new && o_new LOOP

IF rb_cardinality(i_new) < rb_cardinality(o_new) THEN
SELECT rb_or_agg(edges) - i_tc INTO i_new FROM lj_i WHERE node = ANY (rb_to_array(i_new));
IF rb_is_empty(i_new) THEN RETURN null; END IF;
i_depth := i_depth + 1; i_tc := i_tc | i_new;

ELSE
SELECT rb_or_agg(edges) - o_tc INTO o_new FROM lj_o WHERE node = ANY (rb_to_array(o_new));
IF rb_is_empty(o_new) THEN RETURN null; END IF;
o_depth := o_depth + 1; o_tc := o_tc | o_new;

END IF;
END LOOP;
RETURN i_depth + o_depth;

END;$$ LANGUAGE plpgsql STABLE STRICT;

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 56/62

Graph benchmark

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 57/62

That’s all folks!

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 58/62

Questions

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 59/62

Questions

You can leave feedback at

2023.pgconf.eu/f

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 60/62

Bonus

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 61/62

Why/why not use this in GIN

▶ Conceptually very similar to what GIN postinglist is.
▶ GIN needs to run visibility checks
▶ CTID is [32bit block][16bit lp]

▶ The linepointer values are < 300
▶ Page headers make it so a bitmap container doesn’t fit in a page.

Counting things at the speed of light with roaring bitmaps Ants Aasma pgconf.eu 2023 62/62

	Hello
	What is faceting
	Roaring Bitmaps
	pg_roaringbitmap
	Building the faceting
	Other uses for Roaring Bitmaps
	That’s all folks!
	Questions
	Bonus

