
A journey into 
PostgreSQL logical 
replication
José Neves - December 2023



PostgreSQL Monolithic Database

Track evolved on top of a monolithic transactional database. And we have 
been facing more and more challenges on the data side of things. Especially 
when it comes to building reporting features over normalized data structures.



We want to build bigger, faster, more complete 
reporting features.

For that, we need to provide fast access to data 
across different dimensions.

In sum, we needed to modernize our data stack, from 
ingestion, and warehousing, to finally building the 
visualization tools that our users love.

Moving data around



CDC pipeline
We needed to capture data changes happening on 
our transactional databases. Not really a single, or 
periodic, extraction.

We need a CDC pipeline, providing us with a reliable 
data stream of changes happening on the 
transactional side of things in close to real-time.



Extract, transform, … serve
Workers would tap into the data change 
stream, and make sure that the 
transformations that we chose to do, were 
reflecting the last changes that users made to 
their data.

The resulting data, would then be ready to be 
used and served with as little computing as 
possible.



Postgres Logical Replication
We leveraged PostgreSQL logical replication to stream data to a messaging 
service. Creating our CDC pipeline.

We then transform that data to create OLAP data structures and keep them 
up-to-date in close to real-time.

At the other end, we still use Postgres to transform, keep, and serve our 
report-friendly (OLAP) datasets. However, modularization is in place to 
allow us to replace any of the technologies used in the different gears of the 
system.



Logical Replication Client
Set out to implement a small logical replication 
wrapper in GoLang, using pglogrepl 
(github.com/jackc/pglogrepl).



Simplistic Implementation
switch m := logicalMsg.(type) {

case *pglogrepl.RelationMessage:

set.Add(*m)

return nil

case *pglogrepl.InsertMessage:

return doSomeInsertStuff()

case *pglogrepl.UpdateMessage:

return doSomeUpdateStuff()

case *pglogrepl.DeleteMessage:

return doSoneDeleteSuff()

}

rawMsg, _ := w.getReplicationMessage()

msg, _ := rawMsg.(*pgproto3.CopyData)

switch msg.Data[0] {

case pglogrepl.PrimaryKeepaliveMessageByteID:

pkm, _ := pglogrepl.ParsePrimaryKeepaliveMessage(msg.Data[1:])

if pkm.ReplyRequested {

if err = w.sendStandbyStatus(w.ctx); err != nil {

return err

}

}

case pglogrepl.XLogDataByteID:

return w.processDataMessage(msg.Data[1:])

}



Data changing events
Logical replication streams data that is already committed.

It won't be rolled back. And DDL changes will not be there anyway.

So, we thought: no use keeping track of events that
don’t change data. Like transaction begins and commits.

We cared only for: Inserts, updates, deletes, maybe truncates.

Spoiler! It was a crappy idea.



Logical replication slot
The slot is persistent, regardless of an active connection. And will store the 
consumption status, using two offsets, restart, and flush LSN*.

LSNs are pointers to given locations in the WAL. Logical replication clients 
must periodically push consumption status to update the slot.

* https://www.postgresql.org/docs/current/datatype-pg-lsn.html



LSN Examples
BEGIN 4/98EE65C0
INSERT 4/98EE65C0
UPDATE 4/98EE66D8
UPDATE 4/98EE6788
COMMIT 4/98EE6830

START TRANSACTION;
INSERT INTO track (description, duration) VALUES (‘Reading’, 360000);
UPDATE track_total SET duration = duration + 360000;
UPDATE user SET entries = entries + 1;
COMMIT;

BEGIN 4/98EE6950
UPDATE 4/98EE6AD8
UPDATE 4/98EE6D28
UPDATE 4/98EE6DD8
COMMIT 4/98EE6F30

BEGIN 4/98EE6F68
INSERT 4/98EE6F68
COMMIT 4/98EE7040

START TRANSACTION;
UPDATE track SET duration = duration + 360000;
UPDATE track_total SET duration = duration + 360000;
UPDATE users SET entries = entries + 1;
COMMIT;

INSERT INTO users (email, password) VALUES (‘@.com’, ‘...’);



Let’s simplify references to LSNs from this point forward, so sequence it’s 
more perceptible. Dropping the hexadecimal representation.

👀Simplifying notation

BEGIN       4/98EE7160
INSERT     4/98EE71C8
UPDATE    4/98EE76D8
UPDATE    4/98EE7788
COMMIT    4/98EE7830

BEGIN       LSN000001
INSERT     LSN000002
UPDATE    LSN000003
UPDATE    LSN000004
COMMIT    LSN000005



Without Concurrency
BEGIN       LSN000001
INSERT     LSN000002
UPDATE    LSN000003
UPDATE    LSN000004
COMMIT    LSN000005
BEGIN       LSN000006
INSERT     LSN000007
UPDATE    LSN000008
UPDATE    LSN000009
COMMIT    LSN000010
BEGIN       LSN000011
INSERT     LSN000012
UPDATE    LSN000013
UPDATE    LSN000014
COMMIT    LSN000015

T1

T2

T3

BEGIN       LSN000001
INSERT     LSN000002
UPDATE    LSN000003
UPDATE    LSN000004
COMMIT    LSN000005
BEGIN       LSN000006
INSERT     LSN000007
UPDATE    LSN000008
UPDATE    LSN000009
COMMIT    LSN000010
BEGIN       LSN000011
INSERT     LSN000012
UPDATE    LSN000013
UPDATE    LSN000014
COMMIT    LSN000015



Without Concurrency



With Concurrency
BEGIN       LSN000001
INSERT     LSN000002
UPDATE    LSN000008
UPDATE    LSN000014
COMMIT    LSN000015
BEGIN       LSN000003
INSERT     LSN000004
UPDATE    LSN000005
UPDATE    LSN000009
COMMIT    LSN000011
BEGIN       LSN000006
INSERT     LSN000007
UPDATE    LSN000010
UPDATE    LSN000012
COMMIT    LSN000013

BEGIN       LSN000001
INSERT     LSN000002
BEGIN       LSN000003
INSERT     LSN000004
UPDATE    LSN000005
BEGIN       LSN000006
INSERT     LSN000007
UPDATE    LSN000008
UPDATE    LSN000009
UPDATE    LSN000010
COMMIT    LSN000011
UPDATE    LSN000012
COMMIT    LSN000013
UPDATE    LSN000014
COMMIT    LSN000015

T1

T2

T3



With Concurrency



Concurrency

INSERT     LSN000002
INSERT     LSN000004
UPDATE    LSN000005
INSERT     LSN000007
UPDATE    LSN000008
UPDATE    LSN000009
UPDATE    LSN000010
UPDATE    LSN000011
UPDATE    LSN000014

As we were intentionally disregarding transactions, all we had to work with 
were data-changing events and their offsets.

Log:

INSERT     LSN000004
UPDATE    LSN000005
UPDATE    LSN000009
INSERT     LSN000007
UPDATE    LSN000010
UPDATE    LSN000014
INSERT     LSN000002
UPDATE    LSN000008
UPDATE    LSN000011

Replication Stream:

INSERT     LSN000002
UPDATE    LSN000008
UPDATE    LSN000011
INSERT     LSN000004
UPDATE    LSN000005
UPDATE    LSN000009
INSERT     LSN000007
UPDATE    LSN000010
UPDATE    LSN000014

Operation Order:



Attempting to live with it
Still set on using only data-changing events we 
attempted to keep track of logical replication 
offsets, and make sense of the conflicting 
results, not realizing that such an approach 
would always lead to data losses, happening in 
the most varied ways.



😱 Bad assumptions
We assumed that LSNs were incremental cross-transactions.

Every logical replication event comes with a LSN offset which corresponds to 
a location in the WAL, but logging happens concurrently.

We cared only about data events.

But this only works if your client is always up and running, and never runs 
into trouble.



Commutative Property

INSERT     LSN000002
INSERT     LSN000004
UPDATE    LSN000005
INSERT     LSN000007
UPDATE    LSN000008
UPDATE    LSN000009
UPDATE    LSN000010
UPDATE    LSN000011
UPDATE    LSN000014

Due to the nature of the transformations that we were implementing, data 
order didn’t really matter.
Deletes for us were always updates, translated to +0-value.

+1
+3
-3+1
+2
-1+2
-1+4
-2+1
-1+3
-1+2

10

+1
-3+1
-1+2
+3
-1+4
-1+3
-1+2
-2+1
+2

10



Unraveling inconsistent data mysteries
Working as expected in a controlled 
environment, but we lacked 
conditions for testing under 
concurrency.

Mitigation measures were actually so 
effective that were masking the 
issue.



The wrongs: Incremental LSNs

BEGIN       LSN000001
INSERT     LSN000002
UPDATE    LSN000005
COMMIT    LSN000006

BEGIN       LSN000003
UPDATE    LSN000004
UPDATE    LSN000007
COMMIT    LSN000008

T1

T2

INSERT     LSN000002
UPDATE    LSN000005
UPDATE    LSN000004
UPDATE    LSN000007

We first attempted to solve the issue by tracking the current LSN and 
discarding data with offsets smaller than the current position. We were 
under the wrong impression that we would have incremental LSN offsets.

In this example by 
using “5” offset, we 
would discard the first 
data event of the next 
transaction.



The wrongs: commit ops offsets

INSERT     LSN000002
UPDATE    LSN000005
UPDATE    LSN000004
UPDATE    LSN000007

After figuring out that our data events presented “out-of-order” offsets. We 
fell into another nuance when we stopped discarding data based on 
expecting an incremental offset:
We would duplicated it on reconnection, by committing operation offsets.

If our logical 
replication 
client exited at 
“5”, we would 
commit LSN 
“5” to pg.

INSERT     LSN000002
UPDATE    LSN000005
INSERT     LSN000002
UPDATE    LSN000005
UPDATE    LSN000004
UPDATE    LSN000007

But on 
reconnection we 
would receive the 
last transaction all 
over, duplicating 
data.



The realization

✓ Logical replication works over TCP

✓ COMMIT LSN offsets are ensured to be incrementally-sequential. And 
only committing that offset to the replication slot will mark the transaction 
as consumed.

✓ Replication transaction stream is sorted by transaction end offsets

A few key points became clear laying the path to a proper implementation:



The realization
✓ When we commit LSN offsets that pertain to mid-transaction events, pg 

will resent the whole transaction again upon reconnection.

BEGIN       LSN000001
INSERT     LSN000002
UPDATE    LSN000005
COMMIT    LSN000006

BEGIN       LSN000003
UPDATE    LSN000004
UPDATE    LSN000007
COMMIT    LSN000008

✓ Events for a given transaction are always 
streamed together, regardless of log 
positioning.



The only LSN offsets warrantied to be 
“incrementally-sequential” between 
transactions are COMMIT offsets.
These mark the end of a transaction.

Incremental COMMIT LSNs
BEGIN       LSN000001
INSERT     LSN000002
UPDATE    LSN000005
COMMIT    LSN000006

BEGIN       LSN000003
UPDATE    LSN000004
UPDATE    LSN000007
COMMIT    LSN000008

T1

T2



Incremental COMMIT LSNs
BEGIN       LSN000001
INSERT     LSN000002
UPDATE    LSN000005
COMMIT    LSN000006

BEGIN       LSN000003
UPDATE    LSN000004
UPDATE    LSN000007
COMMIT    LSN000008

T1

T2

Committing offset “6” doesn’t prevent all the 
data in the next transaction from being sent.

All transaction events are resent if the offset 
that we committed to the replication slot is not 
a transaction end - or bigger.



Transactional integrity
We always commit to the replication 
slot the transaction end LSN.

And for that, we make sure that we 
process all data-changing events 
respecting the transactional integrity, in 
order to report progress abiding by 
Postgres rules.



Message sizes
Messaging services will have limited message 
sizes, but a single update can change millions of 
rows, generating transactions with millions 
events.

Possibility of data duplication on chunk split, 
either on plug-off events, or general erroring.



Data duplication possibilities
The proper use of LSN event offsets fully 
prevents data loss, it doesn’t prevent data 
duplication.

In plug-off events, messages that were 
already delivered to our event messaging 
service may not end up committed to 
PostgreSQL replication slot.



Embracing data duplication
We embrace the possibility of data duplication, by keeping track of 
processed LSNs in our transformation process. While the proper usage of 
LSN commits to the replication slot ensures that we will not lose any data.

Similar to the process that PostgreSQL itself does on server-to-server 
logical replication.



José Neves
      @rafalneves

PostgreSQL DBA for Toggl Track

Thank you.


