
Getting the most out of pg_stat_io

About me

13.12.2023 Page 2Getting the most out of pg_stat_io

Daniel Westermann

Principal Consultant

Technology Leader Open Infrastructure

+41 79 927 2446

daniel.westermann[at]dbi-services.com

https://www.linkedin.com/in/daniel-westermann/

@danielwestermann@mastodon.social

All pictures in the slides from: https://unsplash.com/

https://www.linkedin.com/in/daniel-westermann/
https://unsplash.com/

Who we are

13.12.2023 Page 3Getting the most out of pg_stat_io

The Company
>Founded in 2010

>More than 100 employees

>Specialized in the Middleware Infrastructure

> The invisible part of IT

>Customers in Switzerland and all over Europe

Our Offer
>Consulting

>Service Level Agreements (SLA)

>Trainings

>License Management

13.12.2023Getting the most out of pg_stat_io Page 4

pg_stat_statements

Who does not know

pg_stat_statements?

13.12.2023Getting the most out of pg_stat_io Page 5

Don't

You're not in the wrong talk

13.12.2023Getting the most out of pg_stat_io Page 6

The reason I'm asking is…

13.12.2023Getting the most out of pg_stat_io Page 7

pg_stat_statements
Why always 0 for four columns?

There are four columns which are empty(0) by default

postgres=# select version();

version

--

PostgreSQL 16.0 on x86_64-pc-linux-gnu, compiled by gcc (Debian 12.2.0-14) 12.2.0, 64-bit

(1 row)

postgres=# \o | egrep "blk_write_time|blk_read_time"

postgres=# \d pg_stat_statements

blk_read_time | double precision | | |

blk_write_time | double precision | | |

temp_blk_read_time | double precision | | |

temp_blk_write_time | double precision | | |

13.12.2023Getting the most out of pg_stat_io Page 8

pg_stat_statements
Why always 0 for four columns?

There are four columns which are empty(0) by default

>You might easily verify this with the statement above

> (if you did not change the default configuration)

postgres=# select count(*)

from pg_stat_statements

where blk_read_time > 0

or blk_write_time > 0

or temp_blk_read_time > 0

or temp_blk_write_time > 0;

count

0

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 9

pg_stat_statements
Why always 0 for four columns?

The reason is this:

This parameter is off by default,
> "as it will repeatedly query the operating system for the current time,

>which may cause significant overhead on some platforms"

postgres=# show track_io_timing;

track_io_timing

off

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 10

pg_stat_statements
Why always 0 for four columns?

Time to test

13.12.2023Getting the most out of pg_stat_io Page 11

… but how?

13.12.2023Getting the most out of pg_stat_io Page 12

pg_test_timing
Tell me the truth

Say "hello" to pg_test_timing

pg_test_timing is a tool to measure the timing overhead on your system
>and confirm that the system time never moves backwards

> systems that are slow to collect timing data can give less accurate EXPLAIN ANALYZE results

$ pg_test_timing --help

Usage: pg_test_timing [-d DURATION]

$ pg_test_timing -d 5

Testing timing overhead for 5 seconds.

Per loop time including overhead: 53.75 ns

Histogram of timing durations:

< us % of total count

1 94.64253 88038542

2 5.35433 4980712

4 0.00016 145

8 0.00269 2506

…

13.12.2023Getting the most out of pg_stat_io Page 13

pg_test_timing
Tell me the truth

What do those numbers
mean?

13.12.2023Getting the most out of pg_stat_io Page 14

pg_test_timing
Tell me the truth

What do those numbers mean?
$ pg_test_timing -d 5

Testing timing overhead for 5 seconds.

Per loop time including overhead: 53.75 ns

Histogram of timing durations:

< us % of total count

1 94.64253 88038542

2 5.35433 4980712

4 0.00016 145

8 0.00269 2506

…

Micro seconds Percentage of calls in that range Nano seconds, per loop

13.12.2023Getting the most out of pg_stat_io Page 15

pg_test_timing
Tell me the truth

The recommendation (from the docs)

> "Good results will show most (>90%) individual timing calls take less than one microsecond"

$ pg_test_timing -d 5

Testing timing overhead for 5 seconds.

Per loop time including overhead: 53.75 ns

Histogram of timing durations:

< us % of total count

1 94.64253 88038542

2 5.35433 4980712

4 0.00016 145

8 0.00269 2506

…

13.12.2023Getting the most out of pg_stat_io Page 16

How does this relate to …

pg_stat_io ?

13.12.2023Getting the most out of pg_stat_io Page 17

pg_stat_io
The same story

Some columns will be empty (0) by default there as well

>The same story here

> Without track_io_timing = true/1/on/yes, there will be no I/O related statistics

postgres=# \o | grep _time

postgres=# \d pg_stat_io

read_time | double precision | | |

write_time | double precision | | |

writeback_time | double precision | | |

extend_time | double precision | | |

fsync_time | double precision | | |

13.12.2023Getting the most out of pg_stat_io Page 18

pg_stat_io
The same story

Ready to get started?

13.12.2023Getting the most out of pg_stat_io Page 19

(1) - Extends

13.12.2023Getting the most out of pg_stat_io Page 20

pg_stat_io
Extends

How does PostgreSQL organize data files on disk?

>The default segment size is 1GB

> This can be changed at compilation time

$ pg_config | grep -i segsize

CONFIGURE = '--prefix=/u01/app/postgres/product/16/db_0/' '--exec-

prefix=/u01/app/postgres/product/16/db_0/' '--

bindir=/u01/app/postgres/product/16/db_0//bin' '--

libdir=/u01/app/postgres/product/16/db_0//lib' '--

sysconfdir=/u01/app/postgres/product/16/db_0//etc' '--

includedir=/u01/app/postgres/product/16/db_0//include' '--

datarootdir=/u01/app/postgres/product/16/db_0//share' '--

datadir=/u01/app/postgres/product/16/db_0//share' '--with-pgport=5432' '--with-perl' '--

with-python' '--with-openssl' '--with-pam' '--with-ldap' '--with-libxml' '--with-libxslt'

'--with-segsize=1' '--with-blocksize=8' '--with-llvm' 'LLVM_CONFIG=/usr/bin/llvm-config'

'--with-uuid=ossp' '--with-lz4' '--with-zstd' '--with-gssapi' '--with-systemd' '--with-

icu' '--with-system-tzdata=/usr/share/zoneinfo' '--with-extra-version= dbi services build'

13.12.2023Getting the most out of pg_stat_io Page 21

pg_stat_io
Extends

Overview of the data directory

/u02/pgdata/PG1

base

12345

23456

5678

5679
6789

6799

DB OID
Table and
Index files

pg_tblspc

/u03/pgdata/PG1/tbs1
3456: symlink

...

13.12.2023Getting the most out of pg_stat_io Page 22

pg_stat_io
Extends

How does PostgreSQL organize data files on disk?
$ cd $PGDATA

$ oid2name

All databases:

Oid Database Name Tablespace

5 postgres pg_default

4 template0 pg_default

1 template1 pg_default

$ psql -c "create table t1 (a int)"

CREATE TABLE

$ psql -c "select pg_relation_filepath('t1')"

pg_relation_filepath

base/5/16388

(1 row)

$ ls -l base/5/16388

-rw------- 1 postgres postgres 0 Nov 3 17:05 base/5/16388

13.12.2023Getting the most out of pg_stat_io Page 23

pg_stat_io
Extends

We do start from scratch, resetting all pg_stat_io related statistics
$ psql -c "select pg_stat_reset_shared('io')"

pg_stat_reset_shared

(1 row)

$ psql -c "select backend_type

, object

, context

, extends

from pg_stat_io

where extends > 0;"

backend_type | object | context | extends

--------------+--------+---------+---------

(0 rows)

13.12.2023Getting the most out of pg_stat_io Page 24

pg_stat_io
Extends

The arguments for pg_stat_reset_shared are:

>Starting with PostgreSQL 17

> Calling the function without an argument will reset all shared statistics listed above

Argument Meaning

bgwriter reset all the counters shown in the pg_stat_bgwriter view

archiver reset all the counters shown in the pg_stat_archiver view

io reset all the counters shown in the pg_stat_io view

wal reset all the counters shown in the pg_stat_wal view

recovery_prefetch reset all the counters shown in the pg_stat_recovery_prefetch view

13.12.2023Getting the most out of pg_stat_io Page 25

pg_stat_io
Extends

What happens if we start to insert data into our small test table?

>8192 bytes is 8kB, which is the default block size of PostgreSQL

$ psql -c "insert into t1 values(1)"

INSERT 0 1

$ ls -l base/5/16388

-rw------- 1 postgres postgres 8192 Dec 8 20:15 base/5/16388

$ pg_config | grep -i blocksize

CONFIGURE = '--prefix=/u01/app/postgres/product/16/db_0/' '--exec-

…datarootdir=/u01/app/postgres/product/16/db_0//share' '--

datadir=/u01/app/postgres/product/16/db_0//share' '--with-pgport=5432' '--with-perl' '--

with-python' '--with-openssl' '--with-pam' '--with-ldap' '--with-libxml' '--with-libxslt'

'--with-segsize=1' '--with-blocksize=8' '--with-llvm' 'LLVM_CONFIG=/usr/bin/llvm-config'

'--with-uuid=ossp' '--with-lz4' '--with-zstd' '--with-gssapi' '--with-systemd' '--with-

icu' '--with-system-tzdata=/usr/share/zoneinfo' '--with-extra-version= dbi services build'

13.12.2023Getting the most out of pg_stat_io Page 26

pg_stat_io
Extends

What we see here is exactly one extend

>PostgreSQL will extend (increase) the data file(s) by 8kB when it is required

>Required means: If new space is needed, an additional 8kb is added to the data file

$ psql -c "select backend_type

, object

, context

, extends

, op_bytes

from pg_stat_io

where extends > 0"

backend_type | object | context | extends | op_bytes

----------------+----------+---------+-------------------

client backend | relation | normal | 1 | 8192

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 27

pg_stat_io
Extends

The meaning of those columns

Column Description

backend_type The same as in pg_stat_activity (client backend, ….)

object Relation or temp(orary) relation

context normal - reads and writes from/to shared buffers
vacuum - I/O operations performed outside of shared buffers (vacuuming and analyzing)
blkread - certain large read I/O operations done outside of shared buffers, e.g a large seq scan
blkwrite - certain large write I/O operations done outside of shared buffers, such as COPY.

extends Number of relation extend operations, each of the size specified in op_bytes (usually 8kB).

13.12.2023Getting the most out of pg_stat_io Page 28

pg_stat_io
Extends

Generating more extends
$ psql -c "insert into t1 select *

from generate_series(2,1000)"

INSERT 0 999

$ ls -l base/5/16388

-rw------- 1 postgres postgres 40960 Nov 29 11:10 base/5/16388

$ psql -c "select backend_type

, object

, context

, extends

, op_bytes

from pg_stat_io

where extends > 0"

backend_type | object | context | extends | op_bytes

----------------+----------+---------+---------+----------

client backend | relation | normal | 8 | 8192

13.12.2023Getting the most out of pg_stat_io Page 29

pg_stat_io
Extends

What looks strange here?

Let's do the math

>This doesn't match

backend_type | object | context | extends | op_bytes

----------------+----------+---------+---------+----------

client backend | relation | normal | 8 | 8192

$ psql -c "select 8*8192 as bytes"

bytes

65536

(1 row)

$ ls -la base/5/24588

-rw------- 1 postgres postgres 40960 Dec 10 10:32 base/5/16388

13.12.2023Getting the most out of pg_stat_io Page 30

pg_stat_io
Extends

Ideas?

13.12.2023Getting the most out of pg_stat_io Page 31

pg_stat_io
Extends

Not only the data files need to be extended

>There is the free space map

> ... and

>There is the visibility map

$ ls -la base/5/24588*

-rw------- 1 postgres postgres 40960 Dec 10 10:32 base/5/24588

-rw------- 1 postgres postgres 24576 Dec 10 10:32 base/5/24588_fsm

$ psql -c "vacuum t1"

VACUUM

$ ls -la base/5/24588*

-rw------- 1 postgres postgres 40960 Dec 10 10:32 base/5/24588

-rw------- 1 postgres postgres 24576 Dec 10 10:32 base/5/24588_fsm

-rw------- 1 postgres postgres 8192 Dec 10 10:43 base/5/24588_vm

13.12.2023Getting the most out of pg_stat_io Page 32

pg_stat_io
Extends

Finally: What is this metric good for?
> If you combine that with extend_time (if track_io_timing is on)

>This gives you an idea how much time was spend for extending relation files

$ psql -c "alter system set track_io_timing=on" -c "select pg_reload_conf()"

VACUUM

pg_reload_conf

t

(1 row)

$ psql -c "insert into t1 select * from generate_series(1001,2000)"

INSERT 0 1000

$ psql -c "select extends

, extend_time

from pg_stat_io where extends > 0"

extends | extend_time

---------+-------------

13 | 0.045

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 33

pg_stat_io
Extends

Finally: What is this metric good for?
> In a long running cluster / instance

> When there are much more extends than writes

> This might mean, that autovacuum is not able to keep up

> Usually autovacuum/vacuum is freeing space in the relation files and usually writes do not require additional extends

$ psql -c "select backend_type, writes,extends

from pg_stat_io

where writes > 0 or extends > 0"

backend_type | writes | extends

----------------+--------+---------

client backend | 0 | 13

checkpointer | 87 |

(2 rows)

13.12.2023Getting the most out of pg_stat_io Page 34

(2) - Evictions

13.12.2023Getting the most out of pg_stat_io Page 35

pg_stat_io
Evictions

What does "evictions" mean?

Disk blocks

Kernel disk buffer cache

PostgreSQL Shared Buffer Cache Write Ahead Log

fsync

fsync

PG BackendPG Backend PG Backend

recovery

13.12.2023Getting the most out of pg_stat_io Page 36

pg_stat_io
Evictions

What does "evictions" mean?

Disk blocks

Kernel disk buffer cache

PostgreSQL Shared Buffer Cache Write Ahead Log

fsync

fsync

PG BackendPG Backend PG Backend

recovery What happens,
once the buffer cache
is full and new blocks
need to be read from disk
or OS cache?

13.12.2023Getting the most out of pg_stat_io Page 37

pg_stat_io
Evictions

The clock-sweep algorithm, clockwise rotation
> If there are unpinned buffers in the cache, clock-sweep can always find a victim

nextVictimBuffer

3

0 0

4

6
2 5

1

3

8
21

pinned - someone is doing something with the buffer

nextVictimBuffer

3

0 0

4

6
2 5

1

3

8-1
21

nextVictimBuffer

3

0

4

6
2 5

1

3

7
21

Usage count

13.12.2023Getting the most out of pg_stat_io Page 38

pg_stat_io
Evictions

There is a very good description of this in the source code
$ grep -ir "clock sweep" * | awk -F ":" '{print $1}' | uniq

src/backend/storage/buffer/README

src/backend/storage/buffer/localbuf.c

src/backend/storage/buffer/bufmgr.c

src/backend/storage/buffer/freelist.c

src/include/storage/buf_internals.h

$ vi src/backend/storage/buffer/README

…

To choose a victim buffer to recycle when there are no free

buffers available, we use a simple clock-sweep algorithm, which avoids the

need to take system-wide locks during common operations. It works like

this:

…

13.12.2023Getting the most out of pg_stat_io Page 39

pg_stat_io
Evictions

What does "evictions" mean, summary:
>Once the PostgreSQL buffer cache is full

> Blocks/pages needs to be evicted from the cache

> To make room for new blocks to be read from disk

> Kicking blocks/pages out of the buffer cache is called "evictions"

>PostgreSQL uses a simple clock-sweep algorithm to implement this

> A victim is found by decreasing the usage count

> Only for buffers which are not currently pinned

> The usage count gets increased whenever a buffer is pinned

13.12.2023Getting the most out of pg_stat_io Page 40

pg_stat_io
Evictions

pg_stat_io comes with metrics for evictions

>This means that there wasn't any evictions in my instance

$ psql -c "select backend_type

, object

, context

, evictions

from pg_stat_io

where evictions > 0"

backend_type | object | context | evictions

--------------+--------+---------+-----------

(0 rows)

13.12.2023Getting the most out of pg_stat_io Page 41

pg_stat_io
Evictions

To get any numbers for this you need to know the size of the buffer cache

>128MB is the default on Linux systems

>To see any evictions we need to fill the cache

> So PostgreSQL is forced to kick out buffers from the cache to make room for new buffers

$ psql -c "show shared_buffers"

shared_buffers

128MB

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 42

pg_stat_io
Evictions

Before we do that, let's look at the current content of the cache
>The standard extension "pg_buffercache" can be used for that

>This is exactly the size of our cache (shared_buffers)

$ psql -c "create extension pg_buffercache"

CREATE EXTENSION

$ psql -c "select count(*) as \"8k\" from pg_buffercache;"

8k

16384

(1 row)

$ psql -c "select (16384*8)/1024 as MB"

mb

128

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 43

pg_stat_io
Evictions

How does the clock sweep usage/access count look like currently?

>This means only 422 buffers out of the 16384 buffershave been used right now, mostly for internal relations

$ psql -c "select count(*) from pg_buffercache where usagecount > 0"

count

422

(1 row)

$ psql -c "select c.relname, count(*) AS buffers

from pg_class c inner join pg_buffercache b ON b.relfilenode=c.relfilenode

inner join pg_database d on (b.reldatabase=d.oid

and d.datname=current_database())

group by c.relname

oderby 2 desc limit 10;

relname | buffers

---------------------------------+---------

pg_statistic | 14

pg_operator | 14

…

13.12.2023Getting the most out of pg_stat_io Page 44

pg_stat_io
Evictions

Let's force some evictions

>Not a single buffer was evicted

$ pgbench -i -s 100

dropping old tables...

creating tables...

generating data (client-side)...

10000000 of 10000000 tuples (100%) done (elapsed 6.63 s, remaining 0.00 s)

vacuuming...

creating primary keys...

done in 9.24 s (drop tables 0.00 s, create tables 0.01 s, client-side generate 6.65 s,

vacuum 0.14 s, primary keys 2.44 s).

$ psql -c "select backend_type,object,context,evictions

from pg_stat_io

where evictions > 0"

backend_type | object | context | evictions

--------------+--------+---------+-----------

(0 rows)

13.12.2023Getting the most out of pg_stat_io Page 45

pg_stat_io
Extends

Ideas?

13.12.2023Getting the most out of pg_stat_io Page 46

pg_stat_io
Evictions

When reading or writing a huge relation
>PostgreSQL uses a ring buffer instead of the buffer pool

>The ring buffer is a temporary buffer in shared memory

>The allocated ring buffer is released immediately after use

The conditions for using a ring buffer
>The relation size exceeds ¼ of the buffer pool size, ring buffer = 256 KB

>Execution of the following commands, ring buffer = 16 MB

> COPY FROM

> CREATE TABLE AS SELECT

> CREATE/REFRESH MATERIALIZED VIEW

> ALTER TABLE

>Vacuum, ring buffer = 256 KB

> Autovacuum performs vacuum

13.12.2023Getting the most out of pg_stat_io Page 47

pg_stat_io
Evictions

Forcing evictions by pre-loading pgbench_accounts

>The size of pgench_accounts is much larger than the buffer cache, which is 128MB

$ psql -c "create extension pg_prewarm"

CREATE EXTENSION

$ psql -c "select pg_prewarm ('pgbench_accounts'::regclass

, 'buffer'

, 'main' , null, null)"

pg_prewarm

163935

(1 row)

$ psql -c "select pg_size_pretty(pg_relation_size('pgbench_accounts'))"

pg_size_pretty

1281 MB

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 48

pg_stat_io
Evictions

Forcing evictions by pre-loading pgbench_accounts

>We can also see that an autovacuum worker process caused some evictions

$ psql -c "select backend_type

, object

, context

, evictions

from pg_stat_io

where evictions > 0"

backend_type | object | context | evictions

-------------------+----------+---------+-----------

autovacuum worker | relation | normal | 36

client backend | relation | normal | 150232

(2 rows)

13.12.2023Getting the most out of pg_stat_io Page 49

pg_stat_io
Evictions

Finally: What is this metric good for?
>A high number of evictions can mean

> The current size of the buffer cache is too small

> or, in other words

> It might be a good idea to increase shared_buffers

>When PostgreSQL needs to make free space in the buffer cache constantly

> This also causes cache contention

> Many processes / sessions compete against the same resource

13.12.2023Getting the most out of pg_stat_io Page 50

(3) - hits

13.12.2023Getting the most out of pg_stat_io Page 51

pg_stat_io
Hits

When there are evictions, there also must be hits

Disk blocks

Kernel disk buffer cache

PostgreSQL Shared Buffer Cache Write Ahead Log

fsync

fsync

PG BackendPG Backend PG Backend

recovery

What happens,
if a buffer requested
is aleady in the cache?

No need to read
from either the
disk or the OS
cache

13.12.2023Getting the most out of pg_stat_io Page 52

pg_stat_io
Hits

When there are evictions, there also must be hits
> "hits" mean: A requested buffer is already in the cache

> It can be used immediately without requesting the buffer from disk or OS cache

> The more hits you'll see, the less reads against relation data files you'll see

$ psql -c "select backend_type, object, context, hits

from pg_stat_io

where hits > 0"

backend_type | object | context | hits

-------------------+----------+-----------+--------

autovacuum worker | relation | normal | 17125

autovacuum worker | relation | vacuum | 14

client backend | relation | bulkread | 1355

client backend | relation | bulkwrite | 161371

client backend | relation | vacuum | 429

background worker | relation | bulkread | 688

background worker | relation | normal | 139

(8 rows)

13.12.2023Getting the most out of pg_stat_io Page 53

pg_stat_io
Hits

What does bulk* mean?

>bulkread: Certain large read I/O operations done outside of shared buffers

> e.g., a sequential scan of a large table

>bulkwrite: Certain large write I/O operations done outside of shared buffers

> such as COPY

$ psql -c "select backend_type, object, context, hits

from pg_stat_io

where hits > 0"

backend_type | object | context | hits

-------------------+----------+-----------+--------

autovacuum worker | relation | normal | 17125

autovacuum worker | relation | vacuum | 14

client backend | relation | bulkread | 1355

client backend | relation | bulkwrite | 161371

client backend | relation | vacuum | 429

background worker | relation | bulkread | 688

background worker | relation | normal | 139

(8 rows)

13.12.2023Getting the most out of pg_stat_io Page 54

pg_stat_io
Hits

Starting from scratch once more

>This already produced some hits

$ psql -c "select pg_stat_reset_shared('io')"

pg_stat_reset_shared

(1 row)

$ psql -c "select backend_type

, object

, context

, hits

from pg_stat_io

where hits > 0"

backend_type | object | context | hits

----------------+----------+---------+------

client backend | relation | normal | 80

13.12.2023Getting the most out of pg_stat_io Page 55

pg_stat_io
Hits

To watch this in action: In one session, always touch the same buffers
$ psql

psql (16.0)

Type "help" for help.

postgres=# select count(*) from t1;

count

2000

(1 row)

postgres=# \watch

Sun 10 Dec 2023 01:57:55 PM CET (every 2s)

count

2000

(1 row)

…

13.12.2023Getting the most out of pg_stat_io Page 56

pg_stat_io
Hits

In another session, monitor the "hits"
postgres=# select backend_type, object, context, hits from pg_stat_io where hits > 0;

backend_type | object | context | hits

-------------------+----------+---------+------

autovacuum worker | relation | normal | 537

client backend | relation | normal | 1090

(2 rows)

postgres=# \watch

backend_type | object | context | hits

-------------------+----------+---------+------

autovacuum worker | relation | normal | 627

client backend | relation | normal | 1306

…

13.12.2023Getting the most out of pg_stat_io Page 57

pg_stat_io
Hits

Finally: What is this metric good for?
>Without "evictions" there is probably not much you can make out of this

>A high number of "hits" compared to a low number of "evictions"

> Most probably means your buffer cache is either fine or too large

>A low number of "hits" compared to a high number of "evictions"

> Most probably means your buffer cache is sized too small

13.12.2023Getting the most out of pg_stat_io Page 58

(4) - fsyncs

13.12.2023Getting the most out of pg_stat_io Page 59

pg_stat_io
fsyncs

What does "fsyncs" mean?

Disk blocks

Kernel disk buffer cache

PostgreSQL Shared Buffer Cache Write Ahead Log

fsync

fsync

PG BackendPG Backend PG Backend

recovery

A commit must go
down to disk, so
there needs be an
fysnc

13.12.2023Getting the most out of pg_stat_io Page 60

pg_stat_io
fsyncs

What does "fsyncs" mean?

Disk blocks

Kernel disk buffer cache

PostgreSQL Shared Buffer Cache Write Ahead Log

fsync

fsync

PG BackendPG Backend PG Backend

recovery

A commit must go
down to disk, so
there needs be an
fysnc

The checkpointer

periodically needs
to fsync dirtied
blocks to disk

13.12.2023Getting the most out of pg_stat_io Page 61

pg_stat_io
fsyncs

fsync calls are only tracked in context normal
postgres=# psql -c "select context

, fsyncs

, fsync_time

from pg_stat_io

where fsyncs > 0"

context | fsyncs | fsync_time

---------+--------+------------

normal | 2 | 5.771

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 62

pg_stat_io
fsyncs

Finally: What is this metric good for?
> It is the task of the checkpointer and the backround writer to write dirtied buffers to disk

> Client backends should be able to rely on those

> But can issue fsyncs as well, if required

> If you see many fsyncs by client backends

> Either shared_buffers is misconfigured

> or

> The checkpointer is not configured correctly

13.12.2023Getting the most out of pg_stat_io Page 63

(5) - Remaining metrics

13.12.2023Getting the most out of pg_stat_io Page 64

pg_stat_io
Remaining metrics

Other metrics we do not have time to talk about

Metric Meaning

reads Number of read operations, each of the size specified in op_bytes

read_time Time spent in read operations in milliseconds

writes Number of write operations, each of the size specified in op_bytes

write_time Time spent in write operations in milliseconds

writebacks Number of units of size op_bytes which the process requested the kernel write out to
permanent storage

writeback_time Time spent in writeback operations in milliseconds

reuses The number of times an existing buffer in a size-limited ring buffer outside of shared buffers
was reused as part of an I/O operation in the bulkread, bulkwrite, or vacuum contexts

13.12.2023Getting the most out of pg_stat_io Page 65

(6) - direct I/O

13.12.2023Getting the most out of pg_stat_io Page 66

pg_stat_io
Direct I/O

Again, the same picture
>This architecture comes with (potential) double buffering

Disk blocks

Kernel disk buffer cache

PostgreSQL Shared Buffer Cache Write Ahead Log

fsync

fsync

PG BackendPG Backend PG Backend

recovery

Buffers might be cached here

... but here as well

13.12.2023Getting the most out of pg_stat_io Page 67

pg_stat_io
Direct I/O

Again, the same picture
>Direct I/O bypasses the OS file cache

>Files must be opened with the O_DIRECT flag (on Unix/Linux systems)

Disk blocks

Kernel disk buffer cache

PostgreSQL Shared Buffer Cache Write Ahead Log

fsync

fsync

PG BackendPG Backend PG Backend

recovery

13.12.2023Getting the most out of pg_stat_io Page 68

pg_stat_io
Direct I/O

PostgreSQL 16 comes with a new developer option: debug_io_direct
>Can be set to either

> "data" for main data files

> "wal" for WAL files

> "wal_init" for initializing WAL files

>Asks the Kernel to minize caching effects

> O_DIRECT (most Unix systems)

> F_NOCACHE (maxOS)

> FILE_FLAG_NO_BUFFERING (Windows)

13.12.2023Getting the most out of pg_stat_io Page 69

pg_stat_io
Direct I/O, help to test

Testing a workload without direct I/O
$ psql -c "show debug_io_direct;

debug_io_direct

(1 row)

$ time pgbench -i -s 10

dropping old tables...

…

real 0m4.747s

user 0m0.208s

sys 0m0.012s

$ pgbench --client=2 --time=10 --progress=1

number of transactions actually processed: 2342

number of failed transactions: 0 (0.000%)

latency average = 8.535 ms

latency stddev = 10.716 ms

initial connection time = 8.949 ms

tps = 234.208970 (without initial connection time)

13.12.2023Getting the most out of pg_stat_io Page 70

pg_stat_io
Direct I/O, help to test

Enabling direct I/O

$ psql -c "alter system set debug_io_direct

to 'data','wal','wal_init';"

ALTER SYSTEM

$ pg_ctl stop

$ pg_ctl start

$ psql -c "show debug_io_direct"

debug_io_direct

data, wal, wal_init

(1 row)

13.12.2023Getting the most out of pg_stat_io Page 71

pg_stat_io
Direct I/O, help to test

Repeating the same workload

postgres@debian12:[160] time pgbench -i -s 10

dropping old tables...

NOTICE: table "pgbench_accounts" does not exist, skipping

…

real 0m5.147s

user 0m0.189s

sys 0m0.010s

postgres@debian12:[160] pgbench --client=2 --time=10 --progress=1

number of transactions actually processed: 2342

number of failed transactions: 0 (0.000%)

latency average = 8.535 ms

latency stddev = 10.716 ms

initial connection time = 8.949 ms

tps = 260.860923 (without initial connection time)

13.12.2023Getting the most out of pg_stat_io Page 72

pg_stat_io
Direct I/O, help to test

... almost

13.12.2023Getting the most out of pg_stat_io Page 73

A big "Thank you, to … "

commit a9c70b46dbe152e094f137f7e6ba9cd3a638ee25
Author: Andres Freund <andres@anarazel.de>
Date: Sat Feb 11 09:51:58 2023 -0800

Add pg_stat_io view, providing more detailed IO statistics

Builds on 28e626bde00 and f30d62c2fc6. See the former for motivation.
…
Bumps catversion.

Author: Melanie Plageman <melanieplageman@gmail.com>
Author: Samay Sharma <smilingsamay@gmail.com>
Reviewed-by: Maciek Sakrejda <m.sakrejda@gmail.com>
Reviewed-by: Lukas Fittl <lukas@fittl.com>
Reviewed-by: Andres Freund <andres@anarazel.de>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Discussion: https://postgr.es/m/20200124195226.lth52iydq2n2uilq@alap3.anarazel.de

13.12.2023Getting the most out of pg_stat_io Page 74

Want to travel to Munich in April 2024?

https://2024.pgconf.de

https://2024.pgconf.de/

Any questions?

Please do ask!

We would love to boost
your IT-Infrastructure

How about you?

Zürich

Basel
Delémont

Nyon

Bern

13.12.2023 Page 75Getting the most out of pg_stat_io

	Slide 1
	Slide 2: About me
	Slide 3: Who we are
	Slide 4: pg_stat_statements
	Slide 5
	Slide 6
	Slide 7: pg_stat_statements
	Slide 8: pg_stat_statements
	Slide 9: pg_stat_statements
	Slide 10: pg_stat_statements
	Slide 11
	Slide 12: pg_test_timing
	Slide 13: pg_test_timing
	Slide 14: pg_test_timing
	Slide 15: pg_test_timing
	Slide 16
	Slide 17: pg_stat_io
	Slide 18: pg_stat_io
	Slide 19
	Slide 20: pg_stat_io
	Slide 21: pg_stat_io
	Slide 22: pg_stat_io
	Slide 23: pg_stat_io
	Slide 24: pg_stat_io
	Slide 25: pg_stat_io
	Slide 26: pg_stat_io
	Slide 27: pg_stat_io
	Slide 28: pg_stat_io
	Slide 29: pg_stat_io
	Slide 30: pg_stat_io
	Slide 31: pg_stat_io
	Slide 32: pg_stat_io
	Slide 33: pg_stat_io
	Slide 34
	Slide 35: pg_stat_io
	Slide 36: pg_stat_io
	Slide 37: pg_stat_io
	Slide 38: pg_stat_io
	Slide 39: pg_stat_io
	Slide 40: pg_stat_io
	Slide 41: pg_stat_io
	Slide 42: pg_stat_io
	Slide 43: pg_stat_io
	Slide 44: pg_stat_io
	Slide 45: pg_stat_io
	Slide 46: pg_stat_io
	Slide 47: pg_stat_io
	Slide 48: pg_stat_io
	Slide 49: pg_stat_io
	Slide 50
	Slide 51: pg_stat_io
	Slide 52: pg_stat_io
	Slide 53: pg_stat_io
	Slide 54: pg_stat_io
	Slide 55: pg_stat_io
	Slide 56: pg_stat_io
	Slide 57: pg_stat_io
	Slide 58
	Slide 59: pg_stat_io
	Slide 60: pg_stat_io
	Slide 61: pg_stat_io
	Slide 62: pg_stat_io
	Slide 63
	Slide 64: pg_stat_io
	Slide 65
	Slide 66: pg_stat_io
	Slide 67: pg_stat_io
	Slide 68: pg_stat_io
	Slide 69: pg_stat_io
	Slide 70: pg_stat_io
	Slide 71: pg_stat_io
	Slide 72: pg_stat_io
	Slide 73: A big "Thank you, to … "
	Slide 74: Want to travel to Munich in April 2024?
	Slide 75

