.) I I:_ il I
L T B

- - i .

-

I _
o :=- : I

dbl
by Sequotech

Getting the most out of

About me C Di services

Daniel Westermann
Principal Consultant

Technology Leader Open Infrastructure

+41 79927 2446

daniel.westermann|at]dbi-services.com

m https://www.linkedin.com/in/daniel-westermann/
@ @danielwestermann@mastodon.social

All pictures in the slides from: https://unsplash.com/

Getting the most out of pg_stat_io 13.12.2023

https://www.linkedin.com/in/daniel-westermann/
https://unsplash.com/

Who we are dbi s

The Company

> Founded in 2010 &

> More than 100 employees & Basel o

> Specialized in the Middleware Infrastructure Delémont Zurich
> The invisible part of IT

. . ®
> Customers in Switzerland and all over Europe Baih

Nyon
Our Offer ®

> Consulting

> Service Level Agreements (SLA)
> Trainings

> License Management

Getting the most out of pg_stat_io 13.12.2023

M OLIAEES NOTL KINNOV

Getting the most out of pg_stat_io 13.12.2023

&
- M SERIOUST

Getting the most out of pg_stat_io 13.12.2023

pg_stat_statements dbi szves
Why always O for four columns?

There are four columns which are empty(0) by default

postgres=# select version();
version
on x86 64-pc-linux-gnu, compiled by gcc (Debian 12.2.0-14) 12.2.0, 64-bit
(1 row)

postgres=# \o | egrep "blk write time|blk read time"
postgres=# \d pg_stat statements

blk read time | double precision | | |
blk write time | double precision | | |
temp blk read time | double precision | | |

| | | |

temp blk write time double precision

Getting the most out of pg_stat_io 13.12.2023

pg_stat_statements
Why always O for four columns?

There are four columns which are empty(0) by default

postgres=# select count (*)
from pg stat statements
where blk read time > 0
or blk write time > 0
or temp blk read time > 0
or temp blk write time > 0;

> You might easily verify this with the statement above
> (if you did not change the default configuration)

Getting the most out of pg_stat_io

13.12.2023

Ol

services
by Sequotech

services

pg_stat_statements dbi srveee
Why always O for four columns?

The reason is this:

postgres=# show track io timing;
track 1o timing

off
(1 row)

This parameter is off by default,
>"as it will repeatedly query the operating system for the current time,

>which may cause significant overhead on some platforms"

13.12.2023

Getting the most out of pg_stat_io

Getting the most out of pg_stat_io 13.12.2023 Page 10

pg_test_timing Adbi semvees
Tell me the truth

Say "hello" to pg test timing

$ pg_test timing --help
Usage: pg test timing [-d DURATION]

pg_test_timing is a tool to measure the timing overhead on your system

>and confirm that the system time never moves backwards

> systems that are slow to collect timing data can give less accurate EXPLAIN ANALYZE results
$ pg_test timing -d 5

Testing timing overhead for 5 seconds.

Per loop time including overhead: 53.75 ns
Histogram of timing durations:

< us % of total count
1 94.64253 88038542
2 5.35433 4980712
4 0.00016 145
8 0.00269 2506

Getting the most out of pg_stat_io 13.12.2023

pg_test_timing Adbi semvees
Tell me the truth

What do those numbers mean?

$ pg_test timing -d 5
Testing timing overhead for 5 seconds.
Per loop time including overhead: 53.75 ns

Histogram jof timing Purations:

< us 3 of total count

1 94.64253 88038542

2 5.35433 4980712

4 0.00016 145

8 0.00269 2500
Micro seconds Percentage of calls in that range Nano seconds, per loop

Getting the most out of pg_stat_io 13.12.2023

pg_test_timing Adbi semvees
Tell me the truth

The recommendation (from the docs)

$ pg_test timing -d 5

Testing timing overhead for 5 seconds.

Per loop time including overhead: 53.75 ns
Histogram of timing durations:

< us % of total count
1 94.64253 88038542
2 5.35433 4980712
4 0.00016 145
8 0.00269 2506

> "Good results will show most (>90%) individual timing calls take less than one microsecond"

Getting the most out of pg_stat_io 13.12.2023

ﬂw do IS relate to ...

pg stat io?

pg_stat_io dbi s
The same story

Some columns will be empty (0) by default there as well

postgres=# \o | grep _time

postgres=# \d pg_stat io

read time | double precision | | I
write time | double precision | | I
writeback time | double precision | | |
extend time | double precision | | I
fsync time | double precision | | I

> The same story here
> Without track o timing = true/1/on/ves, there will be no I/O related statistics

Getting the most out of pg_stat_io 13.12.2023

—

7 &P &> v —_——— A S 8 S i

Getting the most out of pg_stat_io 13.12.2023 Page 18

pg_stat_io Adbi semvees
Extends

How does PostgreSQL organize data files on disk?

$ pg_config | grep -i segsize
CONFIGURE = '--prefix=/u0l/app/postgres/product/16/db 0/' '--exec-—
prefix=/u0l/app/postgres/product/16/db 0/' '--
bindir=/u0l/app/postgres/product/16/db 0//bin' '--
libdir=/u0l/app/postgres/product/16/db 0//1lib"' '--
sysconfdir=/u0l/app/postgres/product/16/db 0//etc' '--
includedir=/ul0l/app/postgres/product/16/db 0//include’' '--
datarootdir=/ul0l/app/postgres/product/16/db 0//share' '--
datadir=/ul0l/app/postgres/product/16/db 0//share' '--with-pgport=5432' '--with-perl' '--
with-python' '--with-openssl' '--with-pam' '—--with-ldap' '—--with-libxml' '--with-libxslt'
'--with-blocksize=8' '--with-1lvm' 'LLVM CONFIG=/usr/bin/llvm-config'
'-—-with-uuid=ossp' '--with-1z4' '--with-zstd' '--with-gssapi' '--with-systemd' '—--with-
icu' '--with-system-tzdata=/usr/share/zoneinfo' '--with-extra-version= dbi services build'

> The default segment size is 1GB
> This can be changed at compilation time

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A seoveee
Extends

Overview of the data directory

/u02/pgdata/PG1

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io Adbi semvees
Extends

How does PostgreSQL organize data files on disk?

$ cd SPGDATA
$ oid2name
All databases:
Oid Database Name Tablespace

5 postgres pg default
4 template0 pg default
1 templatel pg default

$ psql -c "create table tl (a int)"

CREATE TABLE

$ psql -c "select pg relation filepath('tl')"
pg relation filepath

base/5/16388

(1 row)

$ 1s -1 base/5/16388

—rw-——————-— 1 postgres postgres Nov 3 17:05

Getting the most out of pg_stat_io 13.12.2023

pg _stat io
Extends

We do start from scratch, resetting all

$ psql -c "select pg stat reset shared('io')"
Pg stat reset shared

(1 row)
$ psql -c "select backend type

, Object

, context

, extends

from pg stat io
where extends > 0;"

backend type | object | context | extends
—————————————— -t

()

Getting the most out of pg_stat_io

related statistics

13.12.2023

Ol

services
by Sequotech

pg_stat_io A s=ovees
Extends

The arguments for pg_stat_reset_shared are:

Argument Meaning

bgwriter reset all the counters shown in the pg_stat _bgwriter view
archiver reset all the counters shown in the pg_stat_archiver view
io reset all the counters shown in the pg_stat_io view

wal reset all the counters shown in the pg_stat_wal view

recovery prefetch reset all the counters shown in the pg_stat_recovery_ prefetch view

> Starting with PostgreSQL 17

> Calling the function without an argument will reset all shared statistics listed above

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io Adbi semvees
Extends

What happens if we start to insert data into our small test table?

S psql -c "insert into tl values(1l)"

INSERT O 1
$ 1s -1 base/5/16388
—rw-——————-— 1 postgres postgres Dec 8 20:15 base/5/16388

> 8192 bytes is 8kB, which is the default block size of PostgreSQL
$ pg_config | grep -i blocksize

CONFIGURE = '--prefix=/ull/app/postgres/product/1l6/db 0/' '--exec-
..datarootdir=/ull/app/postgres/product/16/db 0//share' '--
datadir=/ul0l/app/postgres/product/16/db 0//share' '--with-pgport=5432' '--with-perl' '--
with-python' '--with-openssl' '--with-pam' '--with-ldap' '—--with-libxml' '--with-libxslt'
'--with-segsize=1" "' ' '--with-1lvm' 'LLVM CONFIG=/usr/bin/llvm-config'
'--with-uuid=ossp' '--with-1z4' '--with-zstd' '--with-gssapi' '--with-systemd' '—--with-
icu' '--with-system-tzdata=/usr/share/zoneinfo' '--with-extra-version= dbi services build'

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io C

Extends

What we see here is exactly one extend

$ psql -c "select backend type
object
context
extends
op_bytes
from pg stat io
where extends > 0"

4
4
4
4

backend type | object | context | |
———————————————— +-——t
client backend | relation | normal | |

(1 row)

> PostgreSQL will extend (increase) the data file(s) by 8B when it is required
> Required means: If new space is needed, an additional 8kb is added to the data file

Getting the most out of pg_stat_io 13.12.2023

Ol

services
by Sequotech

pg_stat_io
Extends

(' services
by Sequotech

The meaning of those columns

Column Description

backend type
object

context

extends

The same as in pg_stat_activity (client backend,)
Relation or temp(orary) relation

normal - reads and writes from/to shared buffers

vacuum - I/O operations performed outside of shared buffers (vacuuming and analyzing)
blkread - certain large read I/O operations done outside of shared buffers, e.g a large seq scan
blkwrite - certain large write 1/O operations done outside of shared buffers, such as COPY.

Number of relation extend operations, each of the size specified in op_bytes (usually 8kB).

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io Adbi semvees
Extends

Generating more extends

$ psqgql -c "insert into tl select *

from generate series(2,1000)"
INSERT 0 999

$ 1s -1 base/5/16388

A T 1 postgres postgres 40960 Nov 29 11:10 base/5/16388
$ psql -c "select backend type
, Object

, context

, extends

, op_bytes

from pg stat io
where extends > 0"

backend type | object | context | |
———————————————— -t
client backend | relation | normal | |

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io Adbi semvees
Extends

What looks strange here?

backend type | object | context | extends | op bytes
———————————————— - -
client backend | relation | normal | 8 | 8192
Let's do the math
S psgl -c "select 8*8192 as bytes"
bytes
65536
(1 row)
$ 1ls -la base/5/24588
—rw——————-— 1 postgres postgres 20900 Dec 10 10:32 base/5/16388

> This doesn't match

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io Adbi semvees
Extends

Not only the data files need to be extended
$ 1s -la base/5/24588*

B 1 postgres postgres 40960 Dec 10 10:32 base/5/24588
—rWw-——————- 1 postgres postgres 24576 Dec 10 10:32 base/5/24588 f=m
> There is the free space map

>...and

$ psql -c "vacuum tl1"

VACUUM

$ 1s -la base/5/24588*

=== 1 postgres postgres 40960 Dec 10 10:32 base/5/24588

e 1 postgres postgres 24576 Dec 10 10:32 base/5/24588 fsm
e 1 postgres postgres 8192 Dec 10 10:43 base/5/24588 vm

> There is the visibility map

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io Adbi semvees
Extends

Finally: What is this metric good for?
> |f you combine that with (if is on)
> This gives you an idea how much time was spend for extending relation files

$ psql -c "alter system set track io timing=on" -c "select pg reload conf ()"
VACUUM
prg reload conf

(1 row)
$ psql -c "insert into tl select * from generate series(1001,2000)"
INSERT 0O 1000
S psqgl -c "select extends
, extend time
from pg stat io where extends > 0"
extends | extend time

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io Adbi semvees
Extends

Finally: What is this metric good for?
> |n a long running cluster / instance
> When there are much more extends than writes

$ psql -c "select backend type, writes,extends
from pg stat io
where writes > 0 or extends > 0"

backend type | writes | extends
________________ _|_________+_________
client backend | 0 | 13

checkpointer | 87 |
(2 rows)

> This might mean, that autovacuum is not able to keep up
> Usually autovacuum/vacuum is freeing space in the relation files and usually writes do not require additional extends

Getting the most out of pg_stat_io 13.12.2023

13.12.2023

Getting the most out of pg_stat_io

pg_stat_io A seoveee
Evictions

What does "evictions" mean?

PG Backend PG Backend PG Backend

PostgreSQL Shared Buffer Cache Write Ahead Log

Kernel d|sk buffer cache

Disk blocks

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A seoveee
Evictions

What does "evictions" mean?

PG Backend PG Backend PG Backend

PostgreSQL Shared Buffer Cache
EEEEEs
! 1 1 |

Kernel disk buffer cache

What happens,

once the buffer cache

is full and new blocks
need to be read from disk
or OS cache?

Write Ahead Log
AN G R

Disk blocks

Getting the most out of pg_stat_io

13.12.2023

pg_stat_io A seoveee
Evictions

The clock-sweep algorithm, clockwise rotation
> |f there are unpinned buffers in the cache, clock-sweep can always find a victim

Ad

nextV'ctimBuff
5

pinned - someone is doing something with the buffer

Usage count

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A s=ovees
Evictions

There is a very good description of this in the source code

$ grep -ir "clock sweep" * | awk -F ":" '{print $1}' | uniq
src/backend/storage/buffer/README
src/backend/storage/buffer/localbuf.c
src/backend/storage/buffer/bufmgr.c
src/backend/storage/buffer/freelist.c
src/include/storage/buf internals.h

$ vi src/backend/storage/buffer/README

To choose a victim buffer to recycle when there are no free

buffers available, we use a simple clock-sweep algorithm, which avoids the
need to take system-wide locks during common operations. It works 1like
this:

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io C

Evictions

What does "evictions" mean, summary:
> Once the PostgreSQL buffer cache is full
> Blocks/pages needs to be evicted from the cache
> To make room for new blocks to be read from disk
> Kicking blocks/pages out of the buffer cache is called "evictions"
> PostgreSQL uses a simple clock-sweep algorithm to implement this

> A victim is found by decreasing the usage count
> Only for buffers which are not currently pinned
> The usage count gets increased whenever a buffer is pinned

Getting the most out of pg_stat_io 13.12.2023

O

services
by Sequotech

pg_stat_io A s=ovees
Evictions

pg stat 1o comes with metrics for evictions

$ psql -c "select backend type
, object
, context
, evictions
from pg stat io
where evictions > 0"
backend type | object | context | evictions

> This means that there wasn't any evictions in my instance

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A s=ovees
Evictions

To get any numbers for this you need to know the size of the buffer cache

$ psql -c "show shared buffers"
shared buffers

> 128MB is the default on Linux systems
> To see any evictions we need to fill the cache
> So PostgreSQL is forced to kick out buffers from the cache to make room for new buffers

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io
Evictions

Before we do that, let's look at the current content of the cache
> The standard extension "pg_buffercache" can be used for that

$ psql -c "create extension pg buffercache"

CREATE EXTENSION

$ psql -c "select count(*) as \"8k\" from pg buffercache;"
8k

(1 row)

mb

> This is exactly the size of our cache (shared_buffers)

Getting the most out of pg_stat_io

13.12.2023

O

services
by Sequotech

pg_stat_io Adbi semvees
Evictions

How does the clock sweep usage/access count look like currently?

$ psql -c "select count(*) from pg buffercache where usagecount > 0"
count

> This means only 422 buffers out of the 16384 buffershave been used right now, mostly for internal relations

S psql -c "select c.relname, count(*) AS buffers
from pg class c inner join pg buffercache b ON b.relfilenode=c.relfilenode
inner join pg database d on (b.reldatabase=d.oid
and d.datname=current database())
group by c.relname
oderby 2 desc limit 10;

relname | buffers
_________________________________ e
pg statistic | 14
Pg operator | 14

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io Adbi semvees
Evictions

Let's force some evictions

$ pgbench -i -s 100

dropping old tables...

creating tables...

generating data (client-side)...

10000000 of 10000000 tuples (100%) done (elapsed 6.63 s, remaining 0.00 s)
vacuuming. ..

creating primary keys...
done in 9.24 s (drop tables 0.00 s, create tables 0.01 s, client-side generate 6.65 s,

vacuum 0.14 s, primary keys 2.44 s).

$ psql -c "select backend type,object,context,evictions
from pg stat io
where evictions > 0"
backend type | object | context | evictions

> Not a single buffer was evicted

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io

—> O
Evictions

When reading or writing a huge relation

> PostgreSQL uses a ring buffer instead of the buffer pool

> The ring buffer is a temporary buffer in shared memory

> The allocated ring buffer is released immediately after use

The conditions for using a ring buffer

> The relation size exceeds % of the buffer pool size, ring buffer = 256 KB

> Execution of the following commands, ring buffer = 16 MB
> COPY FROM

> CREATE TABLE AS SELECT

> CREATE/REFRESH MATERIALIZED VIEW
> ALTER TABLE

>Vacuum, ring buffer = 256 KB

> Autovacuum performs vacuum

Getting the most out of pg_stat_io

13.12.2023

Ol

services
by Sequotech

pg_stat_io Adbi semvees
Evictions

Forcing evictions by pre-loading pgbench_accounts

$ psql -c "create extension pg prewarm"

CREATE EXTENSION

$ psql -c "select pg prewarm ('pgbench accounts'::regclass
, 'buffer’
, 'main' , null, null)"

Pg _prewarm

163935

(1 row)
$ psql -c "select pg size pretty(pg relation size ('pgbench accounts'))"
Pg size pretty

1281 MB
(1 row)

> The size of pgench_accounts is much larger than the buffer cache, which is 128 MB

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io
Evictions

Forcing evictions by pre-loading pgbench_accounts

$ psql -c "select backend type
, object
, context
, evictions
from pg stat io
where evictions > 0"

backend type | object | context | evictions
——————————————————— o
autovacuum worker | relation | normal | 36
client backend | relation | normal | 150232

(2 rows)

> \We can also see that an autovacuum worker process caused some evictions

Getting the most out of pg_stat_io 13.12.2023

O

services
by Sequotech

pg_stat_io A seoveee
Evictions

Finally: What is this metric good for?
> A high number of evictions can mean
> The current size of the buffer cache is too small
> or, in other words
> It might be a good idea to increase shared_buffers
> When PostgreSQL needs to make free space in the buffer cache constantly
> This also causes cache contention

> Many processes / sessions compete against the same resource

Getting the most out of pg_stat_io 13.12.2023

Getting the most out of pg_stat_io 13.12.2023 Page 50

pg_stat_io
Hits

When there are evictions, there also must be hits

PG Backend PG Backend PG Backend

Write Ahead Log
AN G R

PostgreSQL Shared Buffer Cache

HEEEES
L1 1 1 |

/ Kernel disk buffer cache

13.12.2023

Getting the most out of pg_stat_io

o
(, ' services
by Sequotech

What happens,
if a buffer requested
is aleady in the cache?

No need to read
from either the
disk or the OS

cache

p_g_stat_io C
Hits

When there are evictions, there also must be

> mean: A requested buffer is already in the cache
> |t can be used immediately without requesting the buffer from disk or OS cache
> The more hits you'll see, the less reads against relation data files you'll see

$ psql -c "select backend type, object, context, hits

from pg stat _io
where hits > 0"

backend type | object | context |
——————————————————— e matts B
autovacuum worker | relation | normal |
autovacuum worker | relation | vacuum |

client backend | relation | bulkread |

client backend | relation | bulkwrite |

client backend | relation | vacuum |
background worker | relation | bulkread |
background worker | relation | normal |

(8 rows)

Getting the most out of pg_stat_io 13.12.2023

Ol

services
by Sequotech

pg_stat_io dbi szves
Hits

What does bulk® mean?

$ psql -c "select backend type, object, context, hits
from pg stat io
where hits > 0"

backend type | object | context | hits
——————————————————— e
autovacuum worker | relation | normal | 17125

autovacuum worker | relation | vacuum | 14

client backend | relation | bulkread | 1355
client backend | relation | bulkwrite | 161371
client backend | relation | wvacuum | 429
background worker | relation | bullreac | 688
background worker | relation | normal | 139

(8 rows)

> bulkread: Certain large read |/O operations done outside of shared buffers
> e.g., a sequential scan of a large table

> bulkwrite: Certain large write 1/O operations done outside of shared buffers
> such as COPY

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io
Hits

Starting from scratch once more

$ psql -c "select pg stat reset shared('io')"
Pg stat reset shared

(1 row)

$ psql -c "select backend type

, object

, context

, hits

from pg stat io
where hits > 0"
backend type | object | context | hits

———————————————— F———_—— -
client backend | relation | normal | 80

> This already produced some hits

Getting the most out of pg_stat_io

13.12.2023

Ol

services
by Sequotech

pg_stat_io dbi szves
Hits

To watch this in action: In one session, always touch the same buffers

S psql
psgl (16.0)
Type "help" for help.

postgres=# select count(*) from tl;
count

postgres=# \watch
Sun 10 Dec 2023 01:57:55 PM CET (every 2s)

Getting the most out of pg_stat_io 13.12.2023

p_g_stat_io C
Hits

In another session, monitor the "hits"
postgres=# select backend type, object, context, hits from pg stat io where hits > 0;

backend type | object | context | hits
——————————————————— e
autovacuum worker | relation | normal | ©S27
client backend | relation | normal | 1050
(2 rows)
postgres=# \watch
backend type | object | context | hits
——————————————————— e e
autovacuum worker | relation | normal | ©27
client backend | relation | normal | 1-0¢

Getting the most out of pg_stat_io 13.12.2023

Ol

services
by Sequotech

p_g_Stat_iO dbi e
Hits

Finally: What is this metric good for?
> Without "evictions" there is probably not much you can make out of this
> A high number of "hits" compared to a low number of "evictions"
> Most probably means your buffer cache is either fine or too large
> A low number of "hits" compared to a high number of "evictions"
> Most probably means your buffer cache is sized too small

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A seoveee
fsyncs

What does "fsyncs" mean?

PG Backend PG Backend) PG Backend

PostgreSQL Shared Buffer Cache
EEEEEs
! 1 1 |

Kernel disk buffer cache

A commit must go
down to disk, so
there needs be an
fysnc

Disk blocks

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A seoveee
fsyncs

What does "fsyncs" mean?

PG Backend PG Backend PG Backend

s /N recover
PostgreSQL Shared Buffer Cache

TT LT LA T

l fsync &
Kernel disk auffer cache:

The checkpointer

periodically needs
to fsync dirtied
blocks to disk

A commit must go
down to disk, so
there needs be an
fysnc

Disk blocks

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io
fsyncs

fsync calls are only tracked in context normal

postgres=# psql -c "select context
, fsyncs
, fsync_ time
from pg stat io
where fsyncs > 0"

context | fsyncs | fsync time
_________ _|_________+____________
normal | 2 | 5.771

(1 row)

Getting the most out of pg_stat_io

13.12.2023

Ol

services
by Sequotech

pg_stat_io A seoveee
fsyncs

Finally: What is this metric good for?
> |t is the task of the checkpointer and the backround writer to write dirtied buffers to disk
> Client backends should be able to rely on those
> But can issue fsyncs as well, if required
> |f you see many fsyncs by client backends
> Either shared buffers is misconfigured
> or

> The checkpointer is not configured correctly

Getting the most out of pg_stat_io 13.12.2023

YANMAR

1
.)

pg_stat_io dbi sz
Remaining metrics

Other metrics we do not have time to talk about

reads Number of read operations, each of the size specified in op_bytes

read _time Time spent in read operations in milliseconds

writes Number of write operations, each of the size specified in op_bytes

write_time Time spent in write operations in milliseconds

writebacks Number of units of size op_bytes which the process requested the kernel write out to
permanent storage

writeback_time Time spent in writeback operations in milliseconds

reuses The number of times an existing buffer in a size-limited ring buffer outside of shared buffers

was reused as part of an I/O operation in the bulkread, bulkwrite, or vacuum contexts

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A seoveee
Direct 1/0

Again, the same picture
> This architecture comes with (potential) double buffering

PG Backend PG Backend

PostreSQL Shared Buffer Cache Write Ahead Log

PG Backend

Buffers might be cached here

>

... but here as well

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A seoveee
Direct 1/0

Again, the same picture
> Direct |/O bypasses the OS file cache
> Files must be opened with the O DIRECT flag (on Unix/Linux systems)

PostreSQL Shared Buf

Kernel disk buffer cacne

Disk blocks

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io A seoveee
Direct 1/0

PostgreSQL 16 comes with a new developer option: debug o direct
> Can be set to either

> "data" for main data files
> "wal" for WAL files
> "wal _init" for initializing WAL files

recovery

Write Ahead Log

PostgreSQL Shared Buffer Cache
| 1 1] |

Kernel disk buffer cache

> Asks the Kernel to minize caching effects
> O_DIRECT (most Unix systems)
> F_NOCACHE (maxQS)
- FILE_FLAG_NO_BUFFERING (Windows)

Disk blocks

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io dbi ses
Direct |I/0O,

Testing a workload without direct I/0

$ psql -c "show debug io direct;
debug 1o direct

(1 row)

$ time pgbench -i -s 10
dropping old tables...

user Om0.208s

Sys Om0.012s

$ pgbench --client=2 --time=10 --progress=1
number of transactions actually processed: 2342
number of failed transactions: 0 (0.000%)

latency average = 8.535 ms
latency stddev = 10.716 ms
initial connection time = 8.949 ms

(without initial connection time)

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io dbi sz
Direct I/0O, help to test

Enabling direct I/O

$ psql -c "alter system set debug io direct
to 'data','wal','wal init';"
ALTER SYSTEM
$ pg_ctl stop
$ pg_ctl start
$ psql -c "show debug io direct”
debug 1o direct
data, wal, wal init
(1 row)

Getting the most out of pg_stat_io 13.12.2023

pg_stat_io dbi ses
Direct |I/0O,

Repeating the same workload

postgres@debianl2:[160] time pgbench -i -s 10
dropping old tables...
NOTICE: table "pgbench accounts" does not exist, skipping

user Om0.189s

Sys Om0.010s

postgres@debianl2:[160] pgbench --client=2 --time=10 --progress=1
number of transactions actually processed: 2342

number of failed transactions: 0 (0.000%)

latency average = 8.535 ms
latency stddev = 10.716 ms
initial connection time = 8.949 ms

(without initial connection time)

Getting the most out of pg_stat_io 13.12.2023

Getting the most out of pg_stat_io 13.12.2023

A big "Thank you, to ... "

commit a9c70b46dbel152e094f137f7e6ba9cd3a638ee25
Author: Andres Freund <andres@anarazel.de>
Date: Sat Feb 11 09:51:58 2023 -0800

Add pg_stat_io view, providing more detailed |10 statistics

Builds on 28e626bde00 and f30d62c2fc6. See the former for motivation.

Bumps catversion.

Author: Melanie Plageman <melanieplageman@gmail.com>

Author: Samay Sharma <smilingsamay@gmail.com>

Reviewed-by: Maciek Sakrejda <m.sakrejda@gmail.com>

Reviewed-by: Lukas Fittl <lukas@fittl.com>

Reviewed-by: Andres Freund <andres@anarazel.de>

Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>

Discussion: https://postgr.es/m/20200124195226.1th52iydg2n2uilg@alap3.anarazel.de

Getting the most out of pg_stat_io 13.12.2023

O

services
by Sequotech

Want to travel to Munich in April 20247 D s=wvees

by Sequotech

https://2024.pgconf.de

-

S

e
‘ auodde

Lot :ﬁdr‘]ggd
Y

PostgreSQL Europe
Munich Marriott Hotel City West

Getting the most out of pg_stat_io 13.12.2023

https://2024.pgconf.de/

o
' services
by Sequotech

Delémont

7

Any gquestions?

Please do ask!
We would love to boost
your |T-Infrastructure

How about you?

Getting the most out of pg_stat_io 13.12.2023

	Slide 1
	Slide 2: About me
	Slide 3: Who we are
	Slide 4: pg_stat_statements
	Slide 5
	Slide 6
	Slide 7: pg_stat_statements
	Slide 8: pg_stat_statements
	Slide 9: pg_stat_statements
	Slide 10: pg_stat_statements
	Slide 11
	Slide 12: pg_test_timing
	Slide 13: pg_test_timing
	Slide 14: pg_test_timing
	Slide 15: pg_test_timing
	Slide 16
	Slide 17: pg_stat_io
	Slide 18: pg_stat_io
	Slide 19
	Slide 20: pg_stat_io
	Slide 21: pg_stat_io
	Slide 22: pg_stat_io
	Slide 23: pg_stat_io
	Slide 24: pg_stat_io
	Slide 25: pg_stat_io
	Slide 26: pg_stat_io
	Slide 27: pg_stat_io
	Slide 28: pg_stat_io
	Slide 29: pg_stat_io
	Slide 30: pg_stat_io
	Slide 31: pg_stat_io
	Slide 32: pg_stat_io
	Slide 33: pg_stat_io
	Slide 34
	Slide 35: pg_stat_io
	Slide 36: pg_stat_io
	Slide 37: pg_stat_io
	Slide 38: pg_stat_io
	Slide 39: pg_stat_io
	Slide 40: pg_stat_io
	Slide 41: pg_stat_io
	Slide 42: pg_stat_io
	Slide 43: pg_stat_io
	Slide 44: pg_stat_io
	Slide 45: pg_stat_io
	Slide 46: pg_stat_io
	Slide 47: pg_stat_io
	Slide 48: pg_stat_io
	Slide 49: pg_stat_io
	Slide 50
	Slide 51: pg_stat_io
	Slide 52: pg_stat_io
	Slide 53: pg_stat_io
	Slide 54: pg_stat_io
	Slide 55: pg_stat_io
	Slide 56: pg_stat_io
	Slide 57: pg_stat_io
	Slide 58
	Slide 59: pg_stat_io
	Slide 60: pg_stat_io
	Slide 61: pg_stat_io
	Slide 62: pg_stat_io
	Slide 63
	Slide 64: pg_stat_io
	Slide 65
	Slide 66: pg_stat_io
	Slide 67: pg_stat_io
	Slide 68: pg_stat_io
	Slide 69: pg_stat_io
	Slide 70: pg_stat_io
	Slide 71: pg_stat_io
	Slide 72: pg_stat_io
	Slide 73: A big "Thank you, to … "
	Slide 74: Want to travel to Munich in April 2024?
	Slide 75

